Supplemental information

Efficient and stable semitransparent perovskite photovoltaics via a Lewis

base incorporation

Jixi Zeng,^{a,‡} Xi Fan,^{*a,‡} Jinzhao Wang,^b Ziqi Zhang,^a Jiwen Chen,^a Kwun Nam Hui,^e Weijie Song^{*a,c,d}

^aNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China.

^bSchool of Material Science and Engineering, Hubei University, Wuhan 430062, P.R. China.

^cCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.

^dResearch Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou, Zhejiang 311121, P.R. China.

^eJoint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, P.R. China.

*Correspondence: fanxi@nimte.ac.cn (X. F.); weijiesong@nimte.ac.cn (W.J. S.)

Figure S1. (A) An incomplete deposition of the perovskite thin layers on the Lewis base without alkyls (triphenylphosphine, TPP)/MeO-2PACz/ITO/glass. (B) A large contact angle (61°) of the perovskite precursor solutions on the triphenylphosphine/MeO-2PACz/ITO/glass. To avoid the issues of the incomplete deposition and the inferior contacts at interfaces, we proposed the component strategy using the Lewis base and PCBM blends.

Figure S2. Transmittance spectra of the ST-PSCs with AVTs of 4.93%, 14.38% and 25.65%.

Figure S3. Numerical distribution characteristics of PCEs of the optimized ST-PSCs with the Lewis base incorporation.

Figure S4. (A,B) Steady-state photo-current and power outputs of the ST-PSCs based on the 1.42 M and 0.95 M perovskites with the TPP treatments.

Figure S5. Cross-sectional morphology of the perovskite layers. A) 1.42 M, B) 0.95 M, and C) 0.71 M.

Figure S6. Voltage amplitude errors of the 1.42 M (A,B) and 0.71 M (C,D) perovskite thin layers without and with the Lewis base treatments.

Figure S7. The morphology of the perovskite thin layers without and with the Lewis base treatments. The results showed a lower root-mean-square roughness after the Lewis base treatments.

Figure S8. XRD spectra of the 1.42-, 0.95- and 0.71 M perovskite layers those showed the FWHM values of the (101) peaks.

Figure S9. Nyquist plots under dark of the semitransparent PSCs without and with the TPP modifications.

Figure S10. Air stability of the semitransparent PSCs without and with the TPP modifications.

<u> </u>	<u> </u>	14 114	- <u>-</u> 21			DOF [0/]	A) (T [0/]	
Concentration	Scanning	V _{OC} [V]	J _{SC} [mA cm ⁻²]	FF [%]	PCE [%]	PCE _{ave} [%]	AVI [%]	LUE [%]
	F a musa na la	1.002	22.00	70.00			4.05	0.00
1.42 M	Forward	1.093	22.66	76.90	19.06	18.54	4.65	0.88
	Backward ^a	1.095	22.84	76.25	19.07		4.65	0.88
	Forward ^b	1.120	22.68	79.56	20.20		4.93	0.99
					20.20	40 70		
	Backward ^b	1.112	22.76	79.89	20.22	19.78	4.93	0.99
0.95 M	Forward ^a	1.097	20.24	76.26	16.93	16.79	13.51	2.29
	Backward ^a	1.099	20.26	76.47	17.02		13.51	2.30
	Forward ^b	1 1 2 3	20.64	77 94	40.07		14 38	2 60
	1 of Ward	1.125	20.04	77.34	18.07		14.50	2.00
	Backward ^b	1.118	20.73	79.03	18 32	17.89	14.38	2.63
					10.52			
0.71 M	Forward ^a	1.024	17.79	74.03	13.49	13.20	24.38	3.29
	Backward ^a	1.024	17.83	74.25	12 56		24.38	3.31
		2.02.	1,100	/	13.50		2.100	0.01
	Forward [®]	1.039	18.04	79.94	14.98		25.65	3.84
	Backward [▶]	1.0.12	18.02	79.75		14.71	25.65	2.05
		1.043			15.00		25.65	3.85

Table S1. Photovoltaic performances of the three kinds of the semitransparent PSCs without(a) and with (b) the TPP treatments, respectively.

Table S2.	Comparisons	of the PCE AV	/T and LUE values	of all the semitrans	sparent PSCs
Table JZ.	compansons	OI UIC I CL, A	VI and LOL values	of all the semificans	parent i Jes.

Device structure		Top electrode	PCE [%]	AVT [%]	LUE [%]	Ref.
ITO/MeO2PACZ/Cs _{0.05} @TPP/BCP/Ag/CBP	(FA _{0.98} MA _{0.02}) _{0.95} Pb(I _{0.98} Br _{0.02}) ₃ /PCBM	Ag/CBP	20.22	4.93	1.00	Here
FTO/TiO ₂ /CH ₃ NH ₃ PbI ₃ seed/Cu/MoO _x	_{-x} Cl/spiro-MeOTAD/MoOx /Au-	MoO _x /Au/Cu/ MoO _x	12.50	5.00	0.63	4
ITO/MeO2PACZ/Cs _{0.05} @TPP/BCP/Ag/CBP	(FA _{0.98} MA _{0.02}) _{0.95} Pb(I _{0.98} Br _{0.02}) ₃ /PCBM	Ag/CBP	18.32	14.38	2.63	Here
ITO/SnO2/Cs0.1MA0. MeOTAD/MoOx/Cu/A	15FA0.75PbI2.49Br0.51/spiro- g	MoO _x /Cu/Ag/ MoO _x	13.44	8.67	1.17	2
FTO/SnO ₂ /C ₆₀ -SAM/C poly-VNPB/MoOx/Au	s _{0.05} (FA _{0.85} MA _{0.15}) _{0.95} Pb(I _{0.85} Br _{0.15}) ₃ / /MoOx	MoOx/Au/MoO _x	16.1	10.1	1.61	3
FTO/ZnTiO ₃ /FAMAPb(IBr)₃/QDs/NiOx/Au	Au	14.25	14.50	2.07	5
FTO/TiO ₂ /MAPbI _{3-x} Br _x	/Spiro-OMeTAD/Au	Au	18.27	10.00	1.83	9
ITO/SnO ₂ /CsFAMA/sp	iro-MeOTAD/MoOx/Ag/WO _x	MoO _x /Ag/WO _x	15.40	10.17	1.57	15
ITO/SnO2/FAPbI ₃ /spir	o-OMeTAD/MoO3/Ag/WO₃	MoO ₃ /Ag/WO ₃	15.33	12.18	1.87	16
ITO/SnO ₂ / FA _{0.5} MA _{0.38} OMeTAD/MoO ₃ /Ag/ V	Cs _{0.12} Pbl _{2.04} Br _{0.96} / spiro- NO ₃	MoO ₃ /Ag/WO ₃	13.16	16.55	2.18	16
ITO/SnO ₂ / FA _{0.5} MA _{0.38} OMeTAD/MoO ₃ /Ag/ V	Cs _{0.12} Pbl _{2.04} Br _{0.96} / spiro- NO ₃	MoO ₃ /Ag/WO ₃	14.94	14.54	2.17	16
ITO/MeO2PACZ/Cs _{0.05} @TPP/BCP/Ag/CBP	(FA _{0.98} MA _{0.02}) _{0.95} Pb(I _{0.98} Br _{0.02}) ₃ /PCBM	Ag/CBP	15.00	25.65	3.85	Here
FTO/SnO ₂ /Cs _{0.05} (MA _{0.3} OMeTAD/Au NRs+TO/	₁₇ FA _{0.83}) _{0.95} Pb(I _{0.83} Br _{0.17}) ₃ /spiro- AB	Au NRs+TOAB	13.70	27.00	3.70	1
ITO/P3CT-N/CsPbl ₂ Br/	PCBM/C ₆₀ /BCP/Ag/MoO _x	Ag/MoOx	11.04	21.19	2.30	6
ITO/PTAA/MAPbI ₃ -HE	C/PCBM/BCP/Au	Au	11.60	20.69	2.4	7
ITO/PTAA/CH3NH ₃ (I _{0.7}	₇₅ Br _{0.15}) ₃ /PCBM/BCP/Ag/MoOx	Ag/MoOx	12.82	21.00	2.69	8
ITO/PTAA/MAPbl ₃ / PC	CBM-BCP/AI	Al	14.40	20.00	2.88	10
ITO/NiOx/CH ₃ NH ₃ PbI ₃ (PEIE)/Cu	/polyethylenimine ethoxylated	Cu	11.95	20.00	2.39	11
FTO/SnO ₂ /KCsFAMA/S	Spiro-OMeTAD/rGO/AgNWs/rGO ₃	rGO/AgNWs/ rGO₃	14.69	20.11	3.25	12
ITO/MPbl ₃ /C ₆₀ /BCP/A	g	Ag	10.30	22.00	2.27	13
ITO/NiOx/CH ₃ NH ₃ PbI ₃	/PCBM/Zr(acac) ₄ /Ag/CsF	Ag/CsF	11.74	23.00	2.70	14

	A ₁	τ ₁ (ns)	A ₂	τ ₂ (ns)	τ _a (ns)
control	1271.03	5.90	411.53	39.17	28.60
ТРР	1490.79	6.81	532.60	42.33	31.30

Table S3. The lifetimes of the control and modified perovskite/ITO samples.

·