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Figure S1. (a) Schematic of the cluster beam source that is combined with a magnetron sputtering and 

gas-phase condensation chamber, ion optics, a time-of-flight mass selector, and a deposition chamber. 

(b) Mass spectra of the gold clusters. (c) High-resolution HAADF-STEM images of the AuN clusters 

(N = 147, 309, 561, 923, 1415, and 2057). (d) Integrated HAADF intensities of the AuN clusters as a 

function of the corresponding of cluster size (N = 147, 309, 561, 923, 1415, and 2057).



Figure S2. (a) Aberration-corrected scanning transmission electron microscope (200 kV FEI Themis 

Z) at the National Graphene Products Quality Inspection and Testing Center in Wuxi, China. (b) 

Double-tilt in situ heating holder coupled with in situ heating chip.

Figure S3. (a) HAADF-STEM image of the Au2057 clusters. The corresponding size distribution and 

HAADF intensity statistics are depicted in parts (b) and (c), respectively.



Figure S4. QSTEM simulated atlas of the Au2057 icosahedron (Ih).



Figure S5. QSTEM simulated atlas of the Au2057 decahedron (Dh)



Figure S6. QSTEM simulated atlas of the Au2057 face-centered cubic (FCC) structure.



Figure S7. Representative HAADF-STEM images of the Au2057 clusters and the corresponding 
QSTEM multi-slice image simulations at each temperature.



Figure S8. Variation in the atom counts of the Au2057±51 clusters versus the temperature during the in-
situ heating process.

Melting models

Pawlow’s Model:1,2

𝑇𝑚= 𝑇0(1 ‒ 2𝑉𝑠𝑟𝐻𝑚(𝜎𝑠 ‒ 𝜎𝑙(
𝜌𝑠
𝜌𝑙)2/3))

Thomson’s model:3,4

𝑇𝑚= 𝑇0(1 ‒ 2(𝜎𝑠 ‒ 𝜎𝑙)𝑉𝑠𝑟𝐻𝑚 )
The liquid shell model:5–8 

𝑇𝑚= 𝑇0(1 ‒ 2𝑉𝑠𝐻𝑚(
𝜎𝑠 ‒ 𝜎𝑙
𝑟 ‒ 𝑡

+
𝜎𝑙
𝑟 (1 ‒ (𝜌𝑠𝜌𝑙)2/3)))

The lower boundary of the LNG model:9

𝑇𝑚 ‒ 𝑙𝑏= 𝑇0(1 ‒ 3(𝜎𝑠 ‒ 𝜎𝑙)𝑉𝑥𝑟𝐻𝑚 )



The upper limit is given by the Gibbs- Thomson equation:9

𝑇𝑚 ‒ 𝑢𝑏= 𝑇0(1 ‒ 2(𝜎𝑠 ‒ 𝜎𝑙)𝑉𝑠𝑟𝐻𝑚 )
The critical radius in the LNG model is given by:9

𝑟𝑐=
2(𝜎𝑠 ‒ 𝜎𝑙)𝑉𝑠𝑇0
𝐻𝑚(𝑇0 ‒ 𝑇)

Table S1. Constants used for plotting the melting models in Figure 6

Symbol Meaning Value Unit Reference

𝑇0 Bulk melting temperature 1064.18 °C 10,11

𝑉𝑠 Molar volume of the solid 1.021 × 10−5 m3/mol 12

𝐻𝑚 Molar latent heat 12552 J/mol 10,11

𝜎𝑠 Surface tension of the solid 1.4 J/m2 13,14

𝜎𝑙 Surface tension of the liquid 1.135 J/m2 13,14

𝜌𝑠 Mass density of the solid 19300 kg/m3 12

𝜌𝑙 Mass density of the liquid 17310 kg/m3 12
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