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Table. S1 The comparison of Pt/IGZO/SnOx/TiN device’s nociceptive and synaptic behavior compared to previous 
works.

No Structure Nociceptive function Synaptic function Multifunctional behavior Reference

1 Pt/SiOx:Ag/

Ag/Pt

Threshold, no-adaptation, 

relaxation, sensitization

X X [S1]

2 Pt/HfO2/Ti

N

Threshold, relaxation, 

sensitization

X X [S2]

3 CZO/ITO/gl

ass

Threshold, no-adaptation, 

relaxation, sensitization, 

recovery

Potentiation and 

depression

X [S3]

4 Ag/SiC/Pt Threshold, no-adaptation, 

relaxation

STDP X [S4]

5 s-ITO/c-

ITO

Threshold, no-adaptation, 

relaxation, sensitization

X X [S5]

6 ITO/TiOx/Ti

N

Threshold, no-adaptation, 

relaxation, sensitization

X X [S6]

7 Au/MoS2/A

g

Threshold, no-adaptation, 

relaxation, sensitization

X X [S7]

8 Au/CsPbBr3

/ITO

X Potentiation and 

depression, PPF, STM 

and LTM

X [S8]

9 Ti/TaOx/IT

O

X Potentiation and 

depression, STDP

X [S9]

10 Ag/TiO2/Pt Threshold, no-adaptation, 

relaxation, sensitization

STM and LTM, 

SRDP, STDP

X [S10]

11 Pt/IGZO/Sn

Ox/TiN

Threshold, no-adaptation, 

relaxation, sensitization, 

recovery

Learning and 

forgetting, STM and 

LTM, SRDP

Pavlovian conditioning, 

reservoir computing

This work



  

Fig. S1 Fabrication process of the Pt/IGZO/SnOx/TiN memristor.

Fig. S2 The I-V curves of Pt/SnOx/TiN and Pt/IGZO/TiN devices.
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Fig. S3 (a) Coefficient of variation of 100 DC endurance cycles of the Pt/IGZO/SnOx/TiN memristor. (b) Uniformity 
of endurance properties over 10 different randomly selected Pt/IGZO/SnOx/TiN devices, each showcasing 30 
cycles.
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Fig. S4 Energy consumption of the Pt/IGZO/SnOx/TiN device. (a) Energy consumption of read process, resulting 
2.92 pJ. (b) Energy consumption of write process, resulting 36.6 pJ. 

Table. S2 The key parameter comparison of Pt/IGZO/SnOx/TiN device compared to previous works.
No Structu

re

Switching 

film 

thickness

Endurance Operating 

current

Power 
consu

mption

Switchin
g type

Memory 
storing 
function

Referenc
e

1 ITO/Mo

S2/EGaI

n

25 nm- > 103 < 0.1 A 32.9 pJ Digital Non-volatile [S11]

2 VOx/Si

O2/Si

140 / 2.1 nm N/A N/A 0.53 pJ Digital Non-volatile [S12]

3 Au/MoS

2/Au

N/A > 400 < 1 mA 200 pJ Digital Non-volatile [S13]

4 Pt/ZrO2/

IGZO/T

iN

3 / 5 nm > 100 < 4 mA 4 μJ Digital Non-volatile [S14]

5 Ag/SiC/

Pt

10 nm > 100 < 10 μA 32.25 pJ Digital Non-volatile [S4]

6 Ag/MoS

2/Pt

30 nm > 106 N/A 400 nJ Digital Non-volatile [S15]

7 Ag/Ti3C

2Tx 

NS/Pt

N/A N/A < 50 μA 18.82 nJ Digital Volatile [S16]



8 TiN/SiO

2/TaOx/

Pt

25 / 2 nm N/A < 1 mA N/A Digital Non-volatile [S17]

9 Ti/TaOx

/ITO

10 nm > 103 < 10 mA N/A Digital Non-volatile [S9]

10 Pt/IGZO

/SnOx/T

iN

10 / 5 nm > 100 < 500 μA 36.6 pJ Analog Volatile This work
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Fig. S5 (a) Pulse schematic utilized to gain the relaxation properties of the Pt/IGZO/SnOx/TiN device. (b) Current 
response at different relaxation periods.
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Fig. S6 Pulse schematic utilized to gain sensitization properties of the Pt/IGZO/SnOx/TiN device, earned through 
differing (a) injury amplitude, and (b) injury width. Pulse schematic utilized to observe recovery under injury of 
(c) 3.3 V, and (d) 3.6 V.
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Fig. S7 Repeated LTM transition behavior under application of 50 set pulses.



Fig. S8 Schematic illustration of current response of 4-bit reservoir computing following the use of a [1010] pulse.



Fig. S9 Sixteen different reservoir states of the 4-bit reservoir computing based on Pt/IGZO/SnOx/TiN device.
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Fig. S10 Schematic illustration of Pavlovian conditioning process.
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Fig. S11 Facilitation of current observed from Pavlovian conditioning for 500 s after (a) training, and (b) rehearsal.
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