Supporting Information

Evaluation of Polymer-Preservative Interactions for Preservation Efficacy: Molecular Dynamics Simulation and QSAR Approaches

Qisong Xu¹, Pui Shan Chow¹, Erte Xi², Randy Marsh², Shikar Gupta³ and Krishna M.

Gupta1*

 ¹Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
 ² Proctor & Gamble, Winton Hill Business Center, 6280 Center Hill Ave. Cincinnati, OH 45224, United States
 ³Procter & Gamble International Operations SA SG Branch, Singapore 138547, Singapore

*E-mail: krishna_mohan_gupta@isce2.a-star.edu.sg

Table of Contents

S1. Molecular simulation	S2
S2. QSAR modelling	S4
S3. Simulation results	S5
S4. QSAR model results	S 6
References	S 7

S1. Molecular simulation

Polymer	Structure	Number of chains	Number of monomers	Total monomers	Monomer molecular weight (g/mol)	Total mass (g)
PET		18	25	450	192	86400
РР		18	114	2052	42	86348
Cellulose	но он он он он он он он	18	30	540	162	87555

Table S1. Molecular models of polymers in terms of polymer chains and monomers.

Table S2.	. 7-step com	pression and	l relaxation so	cheme. ¹	1
.					

Step	Description	Duration (ps)
1	Energy minimization at 0 K	10
2	NPT MD simulation at 293 K and 3000 bar	300
3	NVT MD simulation at 800 K	100
4	NVT MD simulation at 293 K	100
5	NPT MD simulation at 293 K and 1000 bar	300
6	Repeat Step (3)-(5) for 29 times	
7	NPT MD simulation at 293 K and 1 bar	10000

Figure S1. Polymer models for adsorption simulation.

Entry	Dragomyotiyag	nVa	Number of	Number of ionic
Enuy	Fleservatives	рка	neutral forms	forms
1	Hexanediol	14.5	10	0
2	Octanediol	14.6	10	0
3	Glyceryl caprylate	-	10	0
4	Ethylhexylglycerin	13.7	10	0
5	Sorbitan caprylate	-	10	0
6	Benzyl alcohol	15.4	10	0
7	Phenethyl alcohol	15.88	10	0
8	Phenylpropanol	15.96	10	0
9	Hydroxyacetophenone	9.15	10	0
10	Phenoxyethanol	15.10	10	0
11	Levulinic acid	4.65	8	2
12	Succinic acid	4.61 and 5.61	8	2
13	Citric acid	3.1, 4.7 and 6.4	8	1 ($C_6H_7O_7^-$) and 1 ($C_6H_6O_7^{2-}$)
14	Benzoic acid	4.2	7	3
15	<i>p</i> -Anisic acid	4.47	8	2

Table S3. List of preservatives with pKa values, number of neutral and ionic forms.

S2. QSAR modelling

1	Molecular_Solubility	12	Jurs_PPSA_3
2	ALogP	13	Jurs_FPSA_3
3	Molecular_Volume	14	Jurs_RPCG
4	Molecular_PolarSurfaceArea	15	Shadow_YZ
5	Dipole_mag	16	Shadow_XYfrac
6	Kappa_3	17	Shadow_XZfrac
7	SC_3_C	18	Shadow_YZfrac
8	IC	19	Shadow_nu
9	BIC	20	Shadow_Ylength
10	CIC	21	Shadow_Zlength
11	IAC_Mean	22	JX

Table S4. 22 uncorrelated descriptors of preservatives for QSAR modelling.

All QSAR modelling and sensitivity analysis were performed using the *scikit-learn*² and *scikit-optimize*³ packages. Specifically, *RandomForestRegressor*, *RFE*, *r2_score* and *mean_squared_error* objects in *scikit-learn* package were utilized for random forest (RF), recursive feature elimination (RFE), coefficient of determination (R²) and root-mean-squared error (RMSE), respectively. The *BayesSearchCV* object in *scikit-optimize* package was used to tune the hyperparameters of RF, where **Table S5** lists the range of explored hyperparameters.

 Table S5. Range of hyperparameters explored for random forest.

Hyperparameters	Range of values explored
n_estimators	[50 to 1000]
max_depth	['None', 1 to 5]
min_samples_split	[2 to 5]
min_samples_leaf	[1 to 5]

S3. Simulation results

Table S6. PET density at 293 K as a function of number of polymer chains and monomers.

Run 1	Run 2	Run 3	Average density (g/cm ³)
1.254	1.258	1.260	1.258 ± 0.003
1.254	1.263	1.264	1.260 ± 0.006
1.259	1.258	1.252	1.260 ± 0.004
	Run 1 1.254 1.254 1.259	Run 1Run 21.2541.2581.2541.2631.2591.258	Run 1Run 2Run 31.2541.2581.2601.2541.2631.2641.2591.2581.252

Figure S2. Chemical structures, sizes, and molecular weights for (a) organic acid and (b) alcohol preservative.

S4. QSAR model results

Figure S3. Sensitivity analysis of (T1) IEs between preservatives and polymers at interface for various polymers in terms of (a)-(c) R^2 and (d)-(f) RMSE.

Figure S4. Sensitivity analysis of (T2) IEs between preservatives and water for various polymers in terms of (a)-(c) R² and (d)-(f) RMSE.

Figure S5. Sensitivity analysis of (T3) interior IE between preservatives and polymers for various polymers in terms of (a)-(c) R^2 and (d)-(f) RMSE.

Figure S6. Sensitivity analysis of (T4) diffusion coefficients of preservatives in polymers in terms of (a)-(c) R^2 and (d)-(f) RMSE.

References

1. Shi, Q.; Zhang, K.; Lu, R.; Jiang, J., Water desalination and biofuel dehydration through a thin membrane of polymer of intrinsic microporosity: Atomistic simulation study. *J. Membr. Sci.* **2018**, *545*, 49-56.

2. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V., Scikit-learn: Machine learning in Python. *J. Mach. Learn. Res.* **2011**, *12*, 2825-2830.

3. Head, T.; MechCoder, G. L.; Shcherbatyi, I. J. V. v., scikit-optimize/scikit-optimize: v0. 5.2. **2018**, *5*.