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S1. Computational Details

We considered a 2D crystal structure of single bilayer Bi(111) (SBB) in a supercell setting 

with a vacuum of 18 Ǻ to avoid any spurious interactions between periodic images. For the 

implementation of density functional theory and density functional perturbation theory 

calculations, we used Quantum Espresso [1,2]. After extensive trials of the phonon 

calculations of SBB, we chose Vanderbilt scalar relativistic pseudopotential [3] for non-SOC 

calculations and fully relativistic pseudopotential from PSlibrary [4] for SOC calculations. 

Our trials suggest that these pseudopotentials can produce phonon dispersions of SBB with 

better accuracy than the norm-conserving and projector augmented wave pseudopotentials. 

The major advantage for the use of (Vanderbilt scalar relativistic or fully relativistic) ultrasoft 

pseudopotentials over the norm-conserving pseudopotential is that ultrasoft pseudopotential 

requires a much smaller cutoff energy to speed up the calculations. We selected the 

generalized gradient approximation [5] with Perdew-Burke-Ernzerhof functional for all 

calculations. Optimum cutoff energy and k-point (q-point) grid were determined by the 

convergence tests for the total energy. We found that 38 Ry (for scalar relativistic 

pseudopotential) – 45 Ry (for fully relativistic pseudopotential) cutoff energy for wave 

functions, 450–480 Ry cutoff energy for charge density, Gaussian smearing width 0.03-0.035 

Ry, and  k-point (661–881 q-point) are accurate enough to calculate 12 × 12 × 1 ‒ 16 × 16 × 1

phonon dispersions of SBB allowing the change of total energy less than 1 meV. 

We fully relaxed (both lattice parameters and atomic positions) the structure of SBB using 

 k-point and BFGS algorithm [6]. We performed these calculations with and 16 × 16 × 1

without the SOC effect. We set a strict convergence criterion: self-consistency convergence 

threshold  Ry, energy convergence   Ry, and force convergence of   10 ‒ 7 10 ‒ 07 10 ‒ 07
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Ry/Bohr. We performed phonon calculations using the same self-consistency convergence 

threshold, phonon convergence threshold  Ry, 881 q-point, and potential mixing  10 ‒ 18

parameter of 0.2. For electronic structure calculations, we considered a denser mesh, 

 k-point. For electronic density of states and transport calculations, we used the 24 × 24 × 1

optimized tetrahedron method. We kept the electron occupation fixed for dielectric and 

effective charge calculations. 

Next, we built a 20-atoms zigzag and 24-atoms armchair nanoribbon supercells. We checked 

the feasibility of the phonon calculations including the SOC effect and found that electron-

phonon calculations for armchair nanoribbons beyond 24-atoms are computationally 

infeasible. We then fully relaxed these structures using 45 Ry cutoff energy,  (16 × 1 × 1

) k-point, and self-consistency convergence of  Ry. 1 × 16 × 1  10 ‒ 10

The average electron-phonon coupling matrix was obtained through the moving least square 

method implemented in EPAMLS (with 30 bins and Gaussian smoothing parameter 0.25) [7]. 

In the moving least square approach, the average e-ph matrix for each electronic energy pair 

 and  is obtained through the following equation [7]𝜖1 𝜖2

 𝑔2
𝑣(𝜖1,𝜖2) =

1
𝑊1

∑
𝑚𝑛𝑘𝑞

𝑤𝑚𝑛𝑘𝑞|𝑔 𝑆𝐸
𝑚𝑛𝑣(𝑘,𝑞)|2 ………(𝑆1)

where . Here  is the weighted mean of momentum dependent 
𝑊1 = ∑

𝑚𝑛𝑘𝑞

𝑤𝑚𝑛𝑘𝑞 |𝑔 𝑆𝐸
𝑚𝑛𝑣(𝑘,𝑞)|2

e-ph matrix and   is each sample weight, which includes the Gaussian scaling factor of 𝑤𝑚𝑛𝑘𝑞

the Gaussian function and the sample point degeneracy in the Brillouin zone. We calculated 

electrical conductivity and carrier lifetime using BoltzTraP code [8] by solving a 

semiclassical Boltzmann transport equation with energy eigenvalue (obtained from Quantum 

Espresso) and average e-ph matrix (obtained from EPAMLS code).

The e-ph coupling calculations were performed by using the interpolation technique [9] in 

Quantum Espresso. The e-ph coupling constant (λ) is defined by

𝜆 = ∑
𝑞𝑣

𝜆𝑞𝑣 =
𝛾𝑞𝑣

𝜋 𝑁(𝜀𝐹) 𝜔 2
𝑞𝑣

 ………(𝑆2)

where the phonon linewidth  is expressed as [9]𝛾𝑞𝑣



                              

.
𝛾𝑞𝑣 = 2𝜋𝜔𝑞𝑣∑

𝑚𝑛
∑

𝑘
|𝑔 𝑞𝑣,  𝑚𝑛

𝑘 + 𝑞,  𝑘|2𝛿(𝜀𝑘 + 𝑞,𝑚 ‒ 𝜀𝐹)𝛿(𝜀𝑘,𝑛 ‒ 𝜀𝐹) ………(𝑆3)

Here  is the density of states at the Fermi energy ,  and  describe the 𝑁(𝜀𝐹)  𝜀𝐹 𝜔𝑞𝑣 𝑔 𝑞𝑣,  𝑚𝑛
𝑘 + 𝑞,  𝑘

phonon energy and electron-phonon coupling for electron wavevector k and phonon wave 

wavevector q. 

Fig. S1. Electronic band structure of single bilayer Bi(111) with (a) and without (b) SOC effect. The + 
and - symbols indicate the calculated parity at the high symmetry points. 



                              

Fig. S2: (a) Extended top view of fully relaxed H-passivated zigzag nanoribbon and its side view. (b) 
Extended top view of fully relaxed H-passivated armchair nanoribbon and its side view. The numbers 1, 
2, ….N indicates the width of the ribbon. The native nanoribbons have the same structure excluding 
hydrogen and are not shown here.     

                             



                              

Table S1. Fully relaxed lattice parameters (a, b), and macroscopic dielectric constant (ε), computed based on 
scalar relativistic (SR) (without SOC) and fully relativistic (with SOC) calculations. 

Systems a (Ǻ) b (Ǻ) ε
SR 4.307 4.307 7.09SBB
SOC 4.299 4.299 7.02
SR 4.222 - --Zigzag edge
SOC 4.199 - --
SR 4.281 - 5.73Passivated zigzag edge
SOC 4.263 - --
SR - 7.437 3.98Armchair edge
SOC - 7.397 --
SR - 7.423 3.83Passivated armchair edge
SOC - 7.336 --

The dielectric constant is a pivotal parameter in explaining the electronic structure of 

insulators/semiconductors. Table S1 lists the calculated dielectric constant. The calculated 

value of the dielectric constant of SBB is almost the same as that reported for monolayer 

MoS2 (7.36) [10]. The SOC has a negligible effect on the dielectric properties of SBB. 

Interestingly, the dielectric constant depends on the orientation of the edge, as its magnitude 

for armchair edge or passivated armchair edge is almost half that of zigzag edge or passivated 

zigzag edge. The dielectric constant along the vacuum direction is ~1 for all calculated cases, 

as expected.       
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