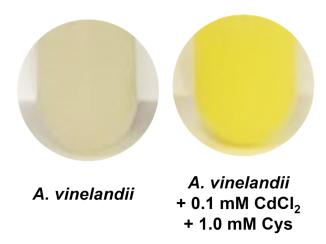
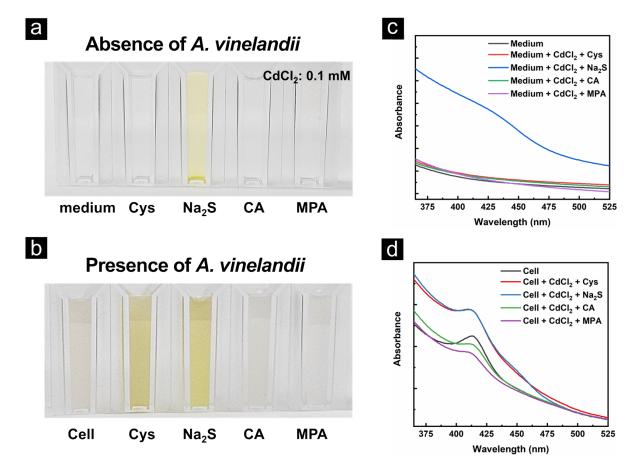
Supplementary Information (SI) for Nanoscale. This journal is © The Royal Society of Chemistry 2024

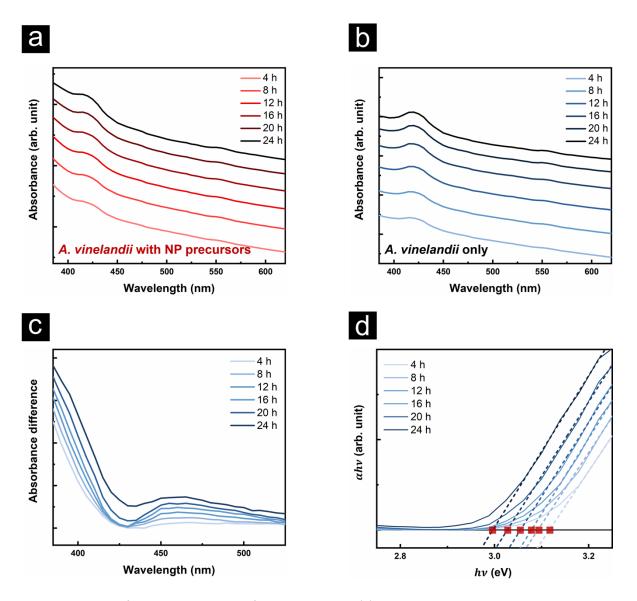
Supporting information

In vivo synthesis of semiconductor nanoparticles in Azotobacter vinelandii for light-driven ammonia production

Gui-Min Kim, $^{+a,b}$ Yoojin Choi, $^{+c}$ Kyeong Rok Choi, a,d,e Ilsong Lee, a,b Jayeong Kim, a,b Byunghyun Lee, a,b Sang Yup Lee *a,d,f and Doh C. Lee *a,b

- a. Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- b. KAIST Institute for the Nanocentury (KINC), Energy & Environmental Research Center (EERC), KAIST, Daejeon, Republic of Korea
- c. Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
- d. Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross Generation Collaborative Laboratory, BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
- e. R&D Center, GS Caltex Corporation, Yuseong-gu, Daejeon, Republic of Korea
- f. BioInformatics Research Center, KAIST, Daejeon, Republic of Korea
- † These authors contributed equally to this work.


Fig. S1 Photographs of A. vienlandii only (left) and A. vinelandii cultured in a medium containing 0.1 mM CdCl_2 and 1.0 mM cysteine (cys) (right). The images illustrate the coloration differences in response to the presence of the biosynthesis precursors

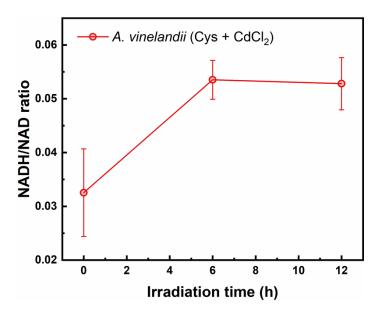

Fig. S2 Relative expression level of *icsS* gene of *A. vinelandii* cell with varying cysteine concentrations of the culture condition.

Fig. S3 Photographs of the culture media containing 0.1 mM CdCl_2 and various sulfur precursors—cysteine (Cys), sodium sulfide (Na₂S), cysteamine (CA), and 3-mercaptopropionic acid (MPA)—after the cultivation condition (24 h, 30 °C) in (a) the absence and (b) the presence of *A. vinelandii*. The characteristic yellow color represents the synthesized CdS nanoparticles. Absorption spectra of the corresponding culture media in (c) the absence and (d) the presence of *A. vinelandii*.

Fig. S4 Absorbance of *A. vinelandii* cultured for 24 h at 30 °C in (a) a medium with NP biosynthesis precursors and (b) a medium without precursors. (c) Absorbance difference between of *A. vinelandii* when cultured in a medium with nanoparticle biosynthesis precursors versus a control medium. (d) Tauc plot for determining the band gap of CdS nanoparticles synthesized within the *A. vinelandii*. Red squares represent the x-intercepts of corresponding tangents (dashed line) for estimating band gaps of nanoparticles.

Fig. S5 NADH/NAD ratio of *A. vinelandii* (Cys + CdCl₂) biohybrid under light irradiation.

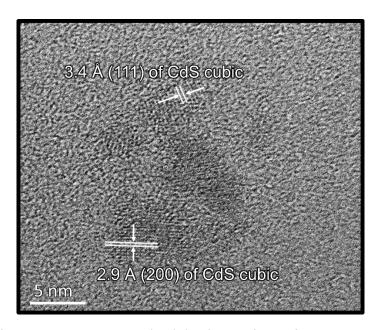


Fig. S6 TEM image of CdS nanoparticle with the (111), (200) lattice fringe of CdS cubic structure.

 $\textbf{Table S1.} \ Comparative \ table \ of \ inorganic-bacteria \ biohybrid \ for \ light-driven \ ammonia \ production \ with \ N_2 \ fixation$

Bacteria species	Photosensitizer	Light source	Strategy	Productivity (mol NH ₄ +/mol cells)	Ref.
A. vinelandii (DJ995)	CdS/ZnS, CdSe/ZnS, InP/ZnS, Cu ₂ ZnSn _S 4/ZnS QDs	400 nm LED	Mixing cell and QDs	4 x 10 ⁷	1
A. vinelandii (DJ995)	Au nanoclusters	400 nm LED	Mixing cell and Au nanoclusters	1 x 10 ⁸	2
A. vinelandii (KCTC2426)	InP/ZnSe QDs	400 nm LED	Cell co-culture with QD during growth phase	1.4 x 10 ⁸	3
A. vinelandii (KCTC2426)	CdS nanoparticles	400 nm LED	Intracellular NP <i>in vivo</i> biosynthesis	1.8 x 10 ⁸	This work

Reference

- Y. Ding, J. R. Bertram, C. Eckert, R. R. Bommareddy, R. Patel, A. Conradie, S. Bryan and P. Nagpal, *J. Am. Chem. Soc.*, 2019, **141**, 10272–10282.
- J. R. Bertram, Y. Ding and P. Nagpal, *Nanoscale Adv.*, 2020, **2**, 2363–2370.
- 3 S. Koh, Y. Choi, I. Lee, G.-M. Kim, J. Kim, Y.-S. Park, S. Y. Lee and D. C. Lee, *J. Am. Chem. Soc.*, 2022, **144**, 10798–10808.