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1. Machine Learning Details

Text S1:

For machine learning (ML) classification, we have considered four supervised classifiers such as 

K-nearest neighbors (KNN), support vector machine (SVM), random forest classifier (RFC), and 

decision tree classifier (DTC), as available in the machine learning package “scikit-learn library” 

using python version 3.10.1 All the details about the four models have been discussed below.

(a) K-Nearest Neighbour (KNN)

The k-Nearest Neighbors (KNN) algorithm is a non-parametric and instance-based learning 

method widely used for classification and regression tasks.2 It operates on the principle that similar 

data points are likely to have similar outcomes. For a given instance, KNN identifies the k closest 

data points (neighbors) in the training dataset using a distance metric, typically 

Euclidean/Manhattan/Minkowski distance. In classification tasks, the query instance is assigned 

the majority class label among its k neighbors. For regression tasks, the prediction is made by 

averaging the values of the k nearest neighbors. Despite its simplicity and effectiveness, KNN can 

be computationally intensive, especially with large datasets, as it requires exhaustive distance 

computations and storage of the entire dataset.

(b) Support Vector Machine (SVM)

Support vector machine (SVM) is a supervised learning algorithm used for both classification 

and regression. It finds the optimal hyperplane to separate data points of different classes, 

maximizing the margin. SVM uses kernel functions to handle non-linear data. It optimizes a 

convex objective function with a regularization parameter. Once trained, SVM classifies new 

data points based on their position relative to the hyperplane. It’s effective in various 

applications like image classification and text categorization.3  



S3

(c) Decision Tree Classifier (DTC)

A decision tree classifier is a supervised learning algorithm that uses a tree-based model to 

classify a set of data points.4 It works by constructing a tree-like representation of the 

relationships between different features in the data. Each internal node in the tree represents a 

test on a feature, each branch represents the outcome of the test, and each leaf node represents 

a class label. The algorithm starts at the root node and iterates down the tree by evaluating the 

features at each node and selecting the appropriate branch until a leaf node is reached. The 

class label assigned to the leaf node is the prediction made by the decision tree classifier for 

the input data. The goal of the decision tree is to find the splits that result in the highest 

information gain or reduction in entropy. The algorithm uses a criterion such as the Gini 

impurity or the information gain to determine the best split at each node. The tree is then grown 

until it reaches stopping criteria such as maximum depth, minimum samples per leaf, or 

minimum gain required for a split. Decision trees are simple and easy to interpret but can be 

prone to overfitting if the tree is allowed to grow too deep. To mitigate this, the tree can be 

pruned or ensembled with other models. Additionally, decision trees are sensitive to the scale 

of the features, so it may be necessary to normalize or standardize the data before using it to 

train the model.

(d) Random Forest Classifier (RFC)

Random Forest Classifier (RFC) is an extension of the decision tree algorithm that operates by 

constructing a multiple of decision trees at training time and outputting the class that is the 

mode of the classes.5 In training, trees are grown using bootstrapped samples of the data and a 

random subset of the features. This results in a low correlation between the trees, reducing 

overfitting. During the prediction, the algorithm takes the average prediction across all trees, 

providing more stability and robustness to outliers. RFC can handle high dimensional and non-
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linear data and is considered a robust algorithm for classification. However, it is 

computationally expensive and may have a longer training time compared to other algorithms.

In ML classification, the confusion matrix is the best evaluation matrix and basic of all other 

matrices. it is a table with combinations of predicted and actual values.

True positive (TP) = The number of correct positive predictions made by a model. 

True negative (TN) = The number of correct negative predictions made by a model.

 False positive (FP) = The number of incorrect positive predictions made by a model.

 False negative (FN) = The number of incorrect negative predictions made by a model. 

Accuracy = Accuracy measures the number of correct predictions done by the model among 

the total number of predictions. 

Table S1. Details of Machine Learning Evaluation Metrics

Accuracy Accuracy measures the number of correct 
predictions done by the model among the 

total number of predictions.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Precision

Precision explains how many of the 
correctly predicted instances turned out to 
be positive. Precision is helpful in cases 
where False Positive is a greater concern 

than False Negatives. It is also known as the 
true positive rate.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall Recall explains how many of the actual 
positive instances we were able to predict 

correctly with our model. It is a useful 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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metric in cases where a False Negative is of 
greater concern than a False Positive. It is 
also known as the sensitivity of the model.

F1 score  It is the harmonic mean of Precision and 
Recall metrics.

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Validation Curve:

A validation curve is conventionally an essential diagnostic tool that depicts the performance 

of model accuracy on the vertical axis with a change in some parameters of the model on the 

horizontal axis. Two curves are present in a validation curve – one for the training set score 

and one for the cross-validation score. A validation curve is used to evaluate an existing model 

based on hyper-parameters and is not used to tune a model. This is because, if we tune the 

model according to the validation score, the model may be biased towards the specific data 

against which the model is tuned, thereby not being a good estimate of the generalization of 

the model. The validation curve is used to determine how effective an estimator is on data that 

it has been trained on, as well as how generalizable it is to new input.

ROC- AUC Curve:

The receiver operating characteristics (ROC) curve visually represents the performance of the 

ML classifier across various classification thresholds. It shows the trade-off between the true 

positiv

e rate 

(sensit

ivity) and the false positive rate (1-specificity) as threshold values change.

   and    
𝑇𝑃𝑅(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =  

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐹𝑃𝑅 = (1 ‒ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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The AUC-ROC metric quantifies the entire area under the ROC curve, extending from the 

origin point (0,0) to (1,1). This metric helps in assessing the ML model’s ability to distinguish 

between different classes. An ideal ML classifier achieves an AUC value of 1, while a random 

classifier scores 0.5. It enables straightforward comparisons among various classification 

models. Typically, models with higher AUC-ROC values demonstrate better classification 

capabilities among different classes.

SHAP Analysis:

To understand the algorithm working principle of RFC model classification ability toward all 

three types of data sets, we have plotted a bar plot of SHAP values for each feature to identify 

how much impact the features have on the model prediction for an individual class. SHapley 

Additive exPlanations (SHAP) is a method based on the concepts of cooperative game theory 

for interpreting the prediction of the machine learning “black box” models.6 Mathematically, 

the Shapley value for a feature ‘ ’ in the context of a prediction ‘ ’is given by the following 𝑥 𝑝

equation.

𝜙𝑥(𝑝) = ∑
𝑠 ⊆ 𝑁/𝑥

|𝑆|!(𝑛 ‒ |𝑆| ‒ 1)!
𝑛!

{𝑝(𝑆 ∪ 𝑥) ‒ 𝑝(𝑆)}

where  is the Shapley value of the  feature for the prediction of ‘ ’, and ‘ ’ is the 𝜙𝑥(𝑝) 𝑥𝑡ℎ 𝑝 𝑆

subset of all the features ‘ ’.  represents the model’s prediction when only the features in 𝑁 𝑝(𝑆)

subset ‘ ’ are considered, and  is the prediction when feature ‘ ’ is included along 𝑆 𝑝(𝑆 ∪ 𝑥) 𝑥

with the features in subset ‘ ’.𝑆
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2. Optimized Geometries of Four Functionalized Nanogap Devices 

Figure S1. Optimized geometries of proposed CGN, HGN, OGN, and NGN devices. Each 
nanogap comprises left (L) and right (R) leads and a central scattering region with precise gap 
sizes customized for individual devices. Here, the z-axis is considered as the transport direction. 
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3. Top and Side Views of Optimized Nanogap+Nucleotide Geometries across 
Four Functionalized Nanogap Devices

Figure S2. The optimized structures (top and side views) of the CGN+nucleotides (dAMP, 
dTMP, dGMP, and dCMP) systems are shown.

Figure S3. The optimized structures (top and side views) of the HGN+nucleotides (dAMP, 
dTMP, dGMP, and dCMP) systems are shown.
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Figure S4. The optimized structures (top and side views) of the NGN+nucleotides (dAMP, 
dTMP, dGMP, and dCMP) systems are shown.

Figure S5. The optimized structures (top and side views) of the OGN+nucleotides (dAMP, 
dTMP, dGMP, and dCMP) systems are shown. 
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4. Effect of In-plane Rotation Dynamics of Nucleotides (dAMP, dTMP, 
dGMP, and dCMP) on their Transmission Function 

To counter the effect of the dynamic behavior of translocating nucleotides inside the nanogap 
device, we have considered seven different orientations (0º to 180º in steps of 30º) along the x-
axis in the yz-plane for each nucleotide, and their transmission functions are calculated as 
shown below:

Figure S6. Transmission function plots of all four nucleotides (dAMP, dTMP, dGMP, and 
dCMP) at seven different orientations inside the CGN device.
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Figure S7. Transmission function plots of all four nucleotides (dAMP, dTMP, dGMP, and dCMP) 
at seven different orientations inside the HGN device.
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Figure S8. Transmission function plots of all four nucleotides (dAMP, dTMP, dGMP, and dCMP) 
at different orientations inside the NGN device.
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Figure S9. Transmission function plots of all four nucleotides (dAMP, dTMP, dGMP, and dCMP) 
at different orientations inside the OGN device.
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5. List of Optimized Hyperparameters and Test Accuracy Scores (%)

Table S2. Optimized Hyperparameters of the Considered ML Classification Algorithms with 

their Test Accuracy Score (%)

Test Accuracy Score (%)Sl. No ML 
Model Optimized Hyperparameters CGN HGN NGN OGN

1 KNN

algorithm': 'auto', 'leaf_size': 30, 
'metric': 'minkowski', 

'metric_params': None, 'n_jobs': 
None, 'n_neighbors': 30, 'p': 2, 

'weights': 'uniform'

48 33 46 33

2 SVM

'C': 1.0, 'break_ties': False, 
'cache_size': 200, 'class_weight': 

None, 'coef0': 0.0, 
'decision_function_shape': 'ovr', 

'degree': 3, 'gamma': 'scale', 'kernel': 
'rbf', 'max_iter': -1, 'probability': 

False, 'random_state': None, 
'shrinking': True, 'tol': 0.001, 

'verbose': False

22 21 21 20

3 DTC

'ccp_alpha': 0.0, 'class_weight': 
None, 'criterion': 'entropy', 

'max_depth': 22, 'max_features': 
None, 'max_leaf_nodes': None, 
'min_impurity_decrease': 0.0, 

'min_samples_leaf': 1, 
'min_samples_split': 2, 

'min_weight_fraction_leaf': 0.0, 
'random_state': 35, 'splitter': 'best'

96 90 95 91

4 RFC

'bootstrap': True, 'ccp_alpha': 0.0, 
'class_weight': None, 'criterion': 

'entropy', 'max_depth': 25, 
'max_features': 'sqrt', 

'max_leaf_nodes': None, 
'max_samples': None, 

'min_impurity_decrease': 0.0, 
'min_samples_leaf': 1, 
'min_samples_split': 2, 

'min_weight_fraction_leaf': 0.0, 
'n_estimators': 100, 'n_jobs': None, 
'oob_score': False, 'random_state': 

100, 'verbose': 0, 'warm_start': False

98 91 94 96
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6. K-Fold Cross-validation Results

Table S3. 10-Fold Cross-validation Scores (Fold 1-10) of the RFC Model with Four 

Functionalized Nanogaps Datasets along with Mean Accuracy, Standard Deviation (Std. Dev.), 

and Test Accuracy Scores for Comprehensive Assessment.

Accuracy (%)
Number of Fold

CGN HGN NGN OGN
Fold 1 95 86 97 91
Fold 2 98 93 100 87
Fold 3 95 97 96 97
Fold 4 100 96 96 97
Fold 5 100 95 96 99
Fold 6 93 95 91 97
Fold 7 95 87 92 92
Fold 8 93 95 96 84
Fold 9 93 82 96 87
Fold 10 97 95 93 97

Mean Accuracy
 std. Dev.±

95.9 2.73± 92.1 5.15± 95.3 2.63± 93.8 .37± 4

Test Accuracy 98 91 94 96
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7. Interaction Energy ( ) and Translocation Time ( ) 𝐸𝑖 𝜏

To understand the electronic interaction between the graphene electrode and the nucleotides 

located inside, we have calculated the interaction energy ( ) using the following equation S1.7𝐸𝑖

 =   (  + )                                                                                                          (S1)𝐸𝑖 𝐸𝑔𝑛 + 𝑛𝑢 ‒ 𝐸𝑔𝑛 𝐸𝑛𝑢

where  is the total energy of the graphene nanogap + nucleotide,  and  are the 𝐸𝑔𝑛 + 𝑛𝑢 𝐸𝑔𝑛 𝐸𝑛𝑢

single-point energy values of isolated graphene nanogap and isolated targeted nucleotide, 

respectively.

Table S4. The Interaction Energy ( ) Values and Translocation Times ( ) of all Four DNA 𝐸𝑖 𝜏
Nucleotides while Located inside Four Functionalized Nanogap (CGN, HGN, NGN, and OGN) 
Devices 
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8. Density of State (DOS) Plots 

Figure S10. The electronic density of state (DOS) plots for CGN+nucleotide, bare CGN device, 
and isolated nucleotide molecule are represented in red, black, and blue colors, respectively.
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Figure S11. The electronic density of state (DOS) plots for HGN+nucleotide, bare HGN device, 
and isolated nucleotide molecule are represented in red, black, and blue colors respectively.
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Figure S12. The electronic density of state (DOS) plots for NGN+nucleotide, bare NGN device, 
and isolated nucleotide molecule are represented in red, black, and blue colors respectively.
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Figure S13. The electronic density of state (DOS) plots for OGN+nucleotide, bare OGN device, 
and isolated nucleotide molecule are represented in red, black, and blue colors, respectively.
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