SUPPLEMENTARY MATERIAL 1 2 Preserved properties of non-pyrogenic chains of 3 magnetosomes following storage in powder form 4 and re-suspension under isotonic conditions. 5 6 Tieu Ngoc Nguyen^{1, 2}, Imène Chebbi¹, Raphaël Le Fèvre¹, François Guyot², 7 Edouard Alphandéry^{1,2,3*} 8 9 10 ¹Nanobacterie SAS, 36 boulevard Flandrin, 75116, Paris. ² Institut de minéralogie de physique des matériaux et de cosmochimie, Sorbonne Université UMR 7590 11 12 CNRS, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle. 4 Place Jussieu, 75005, 13 Paris, France. 14 ³ Institute of Anatomy, UZH University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, CH-15 8057, Zurich, Switzerland. 16

18 * Corresponding author e-mail: edouardalphandery@hotmail.com

19 Supplementary materials et methods:

20 Strains

21 Pseudomonas aeruginosa (VT000266-1VL), Bacillus Subtilis (VT000036-1VL), Staphylococcus
22 Aureus (VT000326-1VL), Candida Albicans (VT000546-1VL), Aspergillus Brasiliensis (VT00053223 1VL) were obtained from Sigma Aldrich. Clostridium Sporogenes (0317E3) was obtained from
24 Microbiologics.

25 Growth promotion test

Under aseptic conditions, 9.9 mL of fluid thioglycolate medium (FTM) were inoculated with 100 26 μL (not more than 100 CFU) of the following microorganisms: Staphylococcus aureus (SA), 27 28 Pseudomonas aeruginosa (PA), Clostridium sporogenes (CS). 9,9 mL of tryptic soy broth (TSB) were inoculated with 100 µL (not more than 100 CFU) of the following microorganisms: Bacillus subtilis 29 (BS), Candida albicans (CA), Aspergillus brasiliensis (AB). All these microorganisms were incubated 30 separately at 35°C for those in FTM and 25°C in TSB. Incubation was not more than 3 days in the 31 32 case of bacteria and not more than 5 days in the case of fungi. FTM and TSB without microorganisms were considered as negative controls (NC). 33

The media were suitable if a clearly visible growth of the microorganisms occurs and an increase
in the optical density at 600 nm (OD₆₀₀) was determined using a spectrophotometer with 900 μL
of medium (Secoman, Uviline 9400).

37 Method suitability test

³⁸ Under aseptic conditions, 20 mg of each lyophilized magnetosome powder were incubated in 9.9 ³⁹ mL of culture media, FTM and TSB. Then 100 μ L (not more than 100 CFU) of viable micro-⁴⁰ organisms were added to the medium. The same micro-organisms described above under the ⁴¹ Growth promotion test are used and inoculated in their corresponding medium. A growth ⁴² promotion test was considered as a positive control of this test. Incubation was not more than 5 ⁴³ days for all the samples. At the end of incubation, 1 mL was taken from each nanoparticle sample ⁴⁴ and placed against the magnet for 10 min to only recuperate the medium. The turbidity was then

45 measured at 600 nm with 900 μL of such medium using a spectrophotometer (Secoman, Uviline
46 9400).

If clearly visible growth of microorganisms and an increase in the OD_{600} were determined after the incubation, visually comparable to that in the control tube without magnetosomes, the product therefore possesses no antimicrobial activity under the conditions of the test. The test for sterility may then be carried out without further modification. If clearly visible growth and an increase in the OD_{600} were not obtained in the presence of the product to be tested, visually comparable to that in the control vessels without product, the product possesses antimicrobial activity that has not been satisfactorily eliminated under the conditions of the test.

55 Supplementary Figures and Tables:

56 Figure S1: (a) Evolution of the biomass (OD₅₆₅), oxygen concentration (%) and Fed-Batch volume

57 added (mL) during the growth step of MSR-1 bacteria in a semi-automated 40 L fermenter.

58 Figure S2: Schematic representation of the M-CMD formulation step

59 Figure S3: Schematic representation of stability measurement of magnetosomes suspensions

60 Figure S4: Sterility assay: (a) growth promotion test for 2-4 days (D1 to D3-D5) using 6 stains. (b)

61 suitability test for 3 days using 6 stains mixed with MgC, M-uncoated and (M-CMD)_F.

Figure S5: Schematic representation of LIU hyperthermia treatment on PC3 cells with or without
(M-CMD)_F.

64

Table S1:Composition of pre-growth medium, growth medium, and iron-rich Fed-batch medium
for the cultivation of MSR-1 magnetotactic bacteria. All chemicals were in pharmaceutical grade
purchased from Merck (Darmstadt, Germany).

68 Table S2: Composition of mineral elixir.

69 **Table S3:** Composition of vitamin mixture.

70 **Table S4:** Number of colony forming units (CFU) of culture media incubating different types of

71 $\,$ magnetosomes for 14 days, determined by inoculating 100 μL of each medium on an agar plate

72 and incubating it for 3 days. Negative controls were the culture media without nanoparticles.

72	2
12)

Ingredient	Pre-growth medium	Growth medium	Fed-batch medium
	(g/L)	(g/L)	(g/L)
Sodium lactate	2.600	1.300	100.0
Ammonium chloride (NH₄Cl)	0.400	0.223	4.800
Magnesium sulfate heptahydrate (MgSO ₄ .7H ₂ O)	0.100	0.027	2.400
Dipotassium phosphate (K ₂ HPO ₄)	0.500	0.067	6.000
Iron (III) chloride hexahydrate (FeCl ₃ .6H ₂ O)	0.000	0.000	2.000
Mineral Elixir ^(a)	0.500 mL	0.080 mL	7.000 mL
Vitamin mixture ^(b)	0.100 mL	0.067 mL	1.000 mL

^(a) see the composition in Table S2. ^(b) See the composition in Table S3

Table S1

78			
79			
80			Mineral Elixir
81		Ingredient	(g/L)
82			
83		Iron (II) sulfate heptahydrate (FeSO ₄ ·7H ₂ O)	1
		Calcium chloride (CaCl ₂)	30
84			
85	Table		
86		S2	
87			
07			
88			

Ingredient	Vitamin mixture (100
	(g/L)
Biotin	0.002
Calcium pentothenate	0.400
Folic acid	0.002
Inositol	2.000
Nicotinic acid	0.400
p-Aminobenzoic acid	0.200
Pyridoxine HCl	0.400
Riboflavin	0.200
Thiamine HCl	0.400

106

	Number of CFU per 100 μ L	
	TSB 25°C	FTM 35°C
Negative controls	0 (a)	0 (b)
MgC	146 ± 21 (c)	> 300 CFU (d)
M-uncoated	0	0
(M-CMD) _F	0	0

107

108~ (a) (b) (c) (d) indicating the photos of agar plates inoculated with 100 μL of TSB, FTM, TSB with MgC and

- 109 FTM with MgC, respectively. For the culture media of M-uncoated, and $(M-CMD)_{F}$, no colonies were
- 110~ observed in their agar plates as exhibited in those of negative controls

1	1	1

112	Table S4
113	
114	
115	
116	
117	
118	

Fig S4

