Supplementary Information: A First-Principles Study of Multilayer Ti₃C₂T_x MXene Model

Yi Zhi Chu^{1,2}, Kah Chun Lau^{2*}

¹Department of Physics, Michigan Technological University, Houghton, MI 49931, USA ²Department of Physics and Astronomy, California State University, Northridge, CA 91330, USA

*Correspondence: <u>kahchun.lau@csun.edu</u>

Figure S1. Thermal stability of the optimized $Ti_3C_2T_x$ ($T_x = O_{0.24}OH_{1.28}F_{0.48}$) multilayer structure at 300 K for 5 ps AIMD simulation. The inset shows the thermal equilibrated structure upon heating to 300 K.

Table S1. The total energy of multilayer $Ti_3C_2T_x$ with P-trigonal and P-octahedral stacking after full structural relaxation.

	Total energy (eV)		
T _x	P-trigonal	P-octahedral	
F ₂	-2963.65978	-2967.23103	
O ₂	-3225.48482*	-3225.45555	
OH ₂	-3562.73442	-3576.21684 -2779.38226	
H ₂	-2781.17203*		
$O_{0.24}OH_{1.28}F_{0.48}$	-3392.74955	-3403.18012	
O _{0.24} OH _{0.64} F _{1.12}	-3192.29390	-3203.63817	

*The final optimized structure is P-octahedral stacking.

Figure S2. Initial and optimized structures of multilayer $Ti_3C_2T_x$. The initial configuration begins with P-trigonal stacking where the adjacent terminal groups face directly towards each other. Upon geometrical optimization, the final optimized structure resembles P-octahedral stacking.

Figure S3. The simulated XRD of uniform F/O/OH/H terminated $Ti_3C_2T_x$ multilayers with P-octahedral and P-trigonal stacking.

Table S2. Calculated *d*-spacing of uniform O/OH/F/H and ternary/quaternary mixed O/OH/F/H-terminated $Ti_3C_2T_x$ multilayers.

T _x	d-spacing (Å)	
O ₂	9.24	
OH ₂	9.83	
F ₂	9.38	
H ₂	7.43	
$O_{0.24}OH_{1.20}F_{0.48}H_{0.08}$	9.60	
$O_{0.24}OH_{0.64}F_{0.48}H_{0.64}$	9.60	
$O_{0.24}F_{0.48}H_{1.28}$	7.97	

Figure S4. From the top to the bottom, the simulated XRD of quaternary/ternary mixed F/O/OH/H terminated $Ti_3C_2T_x$ multilayers with different stoichiometry etched with 5 wt. % HF.

Figure S5. Distribution of interlayer separation with the fitting. The fitting function used the mean of the interlayer separation values of the uniform O-/OH-/F-terminated $Ti_3C_2T_x$ multilayer with P-trigonal and P-octahedral stacking. From the left to the right, the $Ti_3C_2T_x$ with different T_x stoichiometry is found by etching with 5, 10, and 48 wt. % HF.

Figure S6. Distribution of adhesion energy with varying T_x stoichiometry. From the left to the right, the Ti₃C₂T_x with different T_x stoichiometry is found by etching with 5, 10, and 48 wt. % HF.

The weighted interlayer separation is given as:

$$d_{weighted} = a \cdot \frac{\left(d_{O}^{o} + d_{O}^{t}\right)}{2} + b \cdot \frac{\left(d_{OH}^{o} + d_{OH}^{t}\right)}{2} + c \cdot \frac{\left(d_{F}^{o} + d_{F}^{t}\right)}{2} - b \cdot \frac{\left(d_{OH}^{t} - d_{OH}^{o}\right)}{2}$$

where d_x^o , d_x^t are the optimized interlayer separation of uniform terminated multilayer Ti₃C₂T_x structures with x = 0, OH, F, with P-octahedral and P-trigonal stacking respectively, and *a*, *b*, *c* are the O, OH, F percentage respectively.

The weighted adhesion energy is given as:

$$E^{weighted}_{adh} = a \cdot E^{O}_{adh} + b \cdot E^{OH}_{adh} + c \cdot E^{F}_{adh}$$

where E_{adh}^{x} , is the calculated adhesion energy of the uniform terminated multilayer Ti₃C₂T_x structures with x = 0, OH, F, *a*, *b*, *c* are the O, OH, F percentage respectively.

T_x	E_{adh} (J/m ²)
$O_{0.24}OH_{1.20}F_{0.48}H_{0.08}$	0.95
$O_{0.24}OH_{0.64}F_{0.48}H_{0.64}$	0.79
$O_{0.24}F_{0.48}H_{1.28}$	1.09

Table S3. Calculated adhesion energy of ternary and quaternary mixed H-terminated $Ti_3C_2T_{x}$.

Figure S7. Electronic band structure and density of states of uniform O/OH/F/H-terminated multilayer $Ti_3C_2T_x$. All of the structures are found to be metallic.

Figure S8. Electronic band structure and density of states of monolayer $Ti_3C_2T_x$ with $T_x = O_{0.24}OH_{0.64}F_{1.12}$ and $O_{0.24}OH_{1.28}F_{0.48}$, showing metallic characteristic.

-ICOHP pairs	Pair distance (Å)	T_x /Structure	-ICOHP (eV)
F-F	2.85	F ₂	0.003
0-0	2.9	O ₂	0.02
O-H	2.26	OH ₂	0.15
H-H	2.10	H ₂	0.04
	1.88-1.93	H ₂	1.18-1.36
Ti-H	1.87	TiH ₂ crystal	1.21
	1.9	$T_x = O_{0.24} F_{0.48} H_{1.28}$	1.41
TLO	1.95-2.0	TiO ₂ crystal	3.18-3.60
11-0	1.97	$T_x = O_{0.24} F_{0.48} H_{1.28}$	3.4
Ti-F	2.0	$T_x = O_{0.24} F_{0.48} H_{1.28}$	2.4
	1.97	TiF ₃ crystal	3.0
O(H ₂ O)-	1.5-1.8	$Ti_3C_2T_x \cdot H_2O$	0.5-2.5
H(OH)			
H(OH)-F	1.6	Ti ₃ C ₂ T _x ·H ₂ O	1.0-1.5

Table S4. -ICOHP of the atomic pairs in different structures.