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Supporting information

1. Materials and Methods

1.1. Determination of the autofluorescence of C. reinhardtii

Different photosynthetic pigments in green microalgae exhibit strong autofluorescent properties
upon excitation at appropriate wavelengths. Autofluorescence of chlorophyll, the primary
photosynthetic pigment in C. reinhardtii, often causes interference with LDs during fluorescent
staining. Before selecting a suitable AIE-based nanoprobe for lipid imaging, the autofluorescent
spectrum of C. reinhardtii was determined with a fluorescent spectrophotometer to minimise the
background noise. Cells were excited at 350, 405 and 488 nm. The emission peak at around 400
nm for the excitation of 350 nm was unclear (Fig. S1. a). However, two emission peaks at 470
and 685 nm for the excitation of 405 nm (Fig. S1. b) were supposed to be due to the number of
redox ratios (NAD(P)H/FAD) and autofluorescence of chlorophyll!?2. However, maximum

autofluorescence of chlorophyll was observed as a single peak when excited at 488 nm (Fig. S1.

c).
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Fig. S1. Autofluorescence of C. reinhardtii excited at different wavelengths (a) Aex: 350 nm; (b)
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Aex: 405 nm; (C) Aey: 488 nm

1.2. Determination of the lipid specificity of TPA-A

In the study, 10 uM of TPA-A was applied to 2% sunflower oil to identify the lipid specificity of
TPA-A. Confocal microscopy revealed that TPA-A can stain the lipid molecules (Fig. S2). This
lipid specificity of TPA-A is also supported by the previous study® where TPA-A was colocalised

with a commercial lipid droplet probe, Nile Red.

Bright field TPAA Merge

Fig. S2. Fluorescence of TPA-A in 2% sunflower oil under Zeiss LSM 880 Airyscan confocal

microscope. (a) Brightfield; (b) TPA-A (Aex: 405 nm, Aey,: 410-597 nm) and (c) Merge.

1.3. GCMS analysis of TPA-A

To detect the residues of TPA-A, GCMS analysis was performed on day 7 with 10 uM TPA-A
and compared with the initial day peak with the following conditions - Instrument: Waters Synapt
HDMS, Capillary voltage: 2.25 kV, Ionisation mode: ESI positive, Mass range: 50-1000 m/z,

Source Temp: 100 °C, Desolvation temp: 300 °C, Desolvation gas flow rate: 500 L/hr, Sampling
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cone voltage: 20 V, Extraction cone voltage: 4 V. Samples
day 0, peaks were observed at the expected mass (Fig. S3),
Fig. S4 and Fig. S5). This might be due to the complete

means no residues remain in the samples.
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Fig. S3. GC-MS analysis of 10 uM TPA-A at day 0. Samples were prepared in DMSO-MeOH.
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Fig. S4. GC-MS analysis of 10 uM TPA-A at day 7(wavelength 313-338 nm). Samples were

prepared in DMSO-MeOH.
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Fig. S5. GC-MS analysis of 10 uM TPA-A at day 7. Samples were prepared in DMSO-MeOH.
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