Nanoscale

SUPPLEMENTARY INFORMATION

First demonstration of 2T0C-FeDRAM: a-ITZO FET and double gate a-ITZO/a-IGZO FeFET with record-long multibit retention time of > 4-bit and > 2000 s

Tae Hyeon Noh,^{†a} Simin Chen,^{†a} Hyo-Bae Kim,^b Taewon Jin,^a Seoung min Park,^a Seong Ui An,^a Xinkai Sun,^a Jaekyun Kim,^a Jae-Hoon Han,^d Ji-Hoon Ahn,^{*b} Dae-Hwan Ahn,^{*d} and Younghyun Kim^{*a}

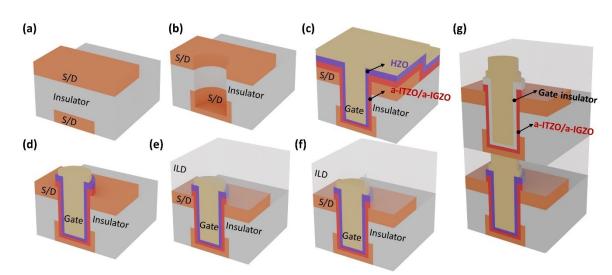


Fig. S1. Process flow of one channel all around (CAA) structure 3D 2T0C-FeDRAM cell (The 3D 2T0C-DRAM process was proposed by Duan *et al.*² Here, the main differentiation is the introduction of the ferroelectrics of HZO after channel formation as a gate insulator.) (a) MIM structure deposited by S/D spacer and top electrode in sequence after bottom electrode formation, (b) channel region etching, (c) gate stack deposition by ALD in sequence (R_{tr} gate stack: a-ITZO/a-IGZO/HZO/gate electrode, W_{tr} gate stack: a-ITZO/gate insulator/gate electrode), (d) active region isolation (e) Inter-Layer dielectric (ILD) deposition, (f) ILD etching, (g) After the lower R_{tr} is completed, the upper W_{tr} repeats the same process.

^{a.} Department of Photonics and Nanoelectronics, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

^{b.} Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea

^c Korea Institute of Science and Technology, Seoul, Republic of Korea

⁺ Both authors equally contributed to this work.

^{*} Corresponding authours

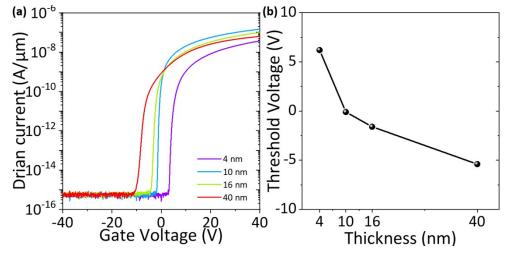


Fig. S2. (a) Transfer characteristics of a-ITZO (4, 10, 16, and 40 nm-thickness) FETs. (b) Thickness dependence of threshold voltage for a-ITZO TFTs.

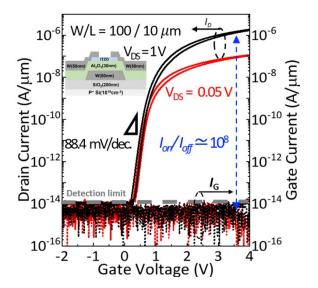


Fig.S3. $I_D - V_G$ characteristics of the write a-ITZO FET. Utilizing high mobility near 25.5 cm²/V s and low leakage current attributes of a-ITZO, a low S.S. value of 88.4 mV/dec. and an off current below 10²⁴ A/ μ m were achieved, making it suitable as a write transistor (W_{tr}) for 2TOC-FeDRAM.

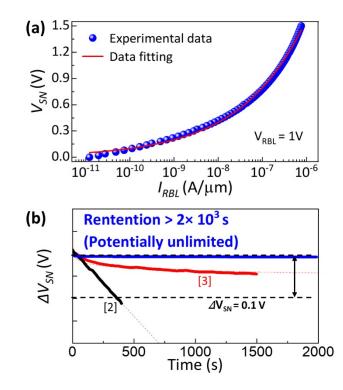


Fig. S4. (a) Data fitting of V_{SN} - I_{RBL} , detected during the 2TOC-FeDRAM read operation, V_{SN} can be extracted. (b) V_{SN} changes vs. time, indicating that the excellent retention time. I_{RBL} was maintained almost without the voltage dropping for a period of 2000 s.^{2, 3}

Notes and references

- 1. X. Duan, K. Huang, J. Feng, J. Niu, H. Qin, S. Yin, G. Jiao, D. Leonelli, X. Zhao and Z. Wang, *IEEE Trans. Electron Devices*, 2022, **69**, 2196-2202, DOI: <u>http://dx.doi.org/10.1109/TED.2022.3154693</u>.
- 2. A. Belmonte, H. Oh, N. Rassoul, G. Donadio, J. Mitard, H. Dekkers, R. Delhougne, S. Subhechha, A. Chasin and M. Van Setten, presented in part at the 2020 IEEE International Electron Devices Meeting (IEDM), 2020.
- 3. K. Chen, Z. Zhu, W. Lu, M. Liu, F. Liao, Z. Wu, J. Niu, B.-M. Kang, W. Dan and X.-S. Wu, presented in part at the 2023 International Electron Devices Meeting (IEDM), 2023.

This journal is © The Royal Society of Chemistry 20xx

Journal Name