Supplementary Information

Modulating the bandgap of Cr-intercalated bilayer graphene via

combining the 18-electron rule and the 2D superatomic-molecule

theory

Dan Li^{a#}, Zaijun Gui^{a#}, Mengxuan Ling^a, Lijiao Guo^a, Zhifang Wang^a, Qinqin Yuan^{a*}, and Longjiu Cheng^{a,b*}

^aDepartment of Chemistry, Anhui University, Hefei, 230601, P. R. China.

^bKey Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, P. R. China.

* Authors to whom correspondence should be addressed.

Electronic mails: clj@ustc.edu (L. Cheng)

<u>qinqinyuan@ahu.edu.cn</u> (Q. Yuan)

[#] These authors contributed equally to this work.

Contents:

1. Fig. S1 Chemical bonding picture of Cr(C₆H₆)₂.

2. Fig. S2 Chemical bonding picture of Cr₃C₃₆H₂₄.

3. Fig. S3 Energy fluctuation depending on simulated time in molecular dynamics simulation of $C_{12}Cr$ monolayer at 1000 K after 5 ps simulation.

4. Fig. S4 Energy fluctuation depending on simulated time in molecular dynamics simulation of $C_{12}Cr$ monolayer at 1500 K after 5 ps simulation.

5. Fig. S5 Energy fluctuation depending on simulated time in molecular dynamics simulation of $C_{12}Cr$ monolayer at 2000 K after 5 ps simulation.

6. Fig. S6 (a) Separating one monolayer from neighboring four layers. (b) Cleavage energy as a function of the separation distance for a fracture in $C_{12}Cr$ bulk.

7. Fig. S7 Crystal orbital Hamilton population (COHP) between C atoms and Cr atoms of (a) C₁₂Cr and (b) C₄₈Cr monolayer.

8. Fig. S8 Chemical bonding picture of C₁₂Cr monolayer.

9. Fig. S9 Chemical bonding picture of Cr(C54H18)2.

10. Fig. S10 Phonon dispersion of C₄₈Cr monolayer.

11. Fig. S11 Energy fluctuation depending on simulated time in molecular dynamics simulation of C₄₈Cr monolayer at 500 K after 5 ps simulation.

12. Fig. S12 Energy fluctuation depending on simulated time in molecular dynamics simulation of C₄₈Cr monolayer at 1000 K after 5 ps simulation.

13. Fig. S13 Energy fluctuation depending on simulated time in molecular dynamics simulation of C₄₈Cr monolayer at 1500 K after 5 ps simulation.

14. Fig. S14 Energy fluctuation depending on simulated time in molecular dynamics simulation of C₄₈Cr monolayer at 2000 K after 5 ps simulation.

15. Fig. S15 Total energy and a snapshot of C_{48} Cr monolayer with 8 O₂ molecules after a 5 ps AIMD simulation at 300 K.

16. Fig. S16 (a) Separating one monolayer from neighboring four layers. (b) Cleavage energy as a function of the separation distance for a fracture in $C_{48}Cr$ bulk.

17. Fig. S17 ELF contour planes in the graphene layer (top) and in the Cr and C plane (below).

Fig. S18 Crystal orbital Hamilton population (COHP) between C atoms and Cr atoms of C₄₈Cr monolayer.

19. Fig. S19 SSAdNDP chemical bonding pattern of the C₄₈Cr monolayer.

20. Structural information of Cr₁₂C monolayer

21. Structural information of Cr₄₈C monolayer

Fig. S1 Chemical bonding picture of Cr(C₆H₆)₂

Fig. S2 Chemical bonding picture of Cr₃C₃₆H₂₄.

Fig. S3 Energy fluctuation depending on simulated time in molecular dynamics simulation of C₁₂Cr monolayer at 1000 K after 5 ps simulation.

Fig. S4 Energy fluctuation depending on simulated time in molecular dynamics simulation of C₁₂Cr monolayer at 1500 K after 5 ps simulation.

Fig. S5 Energy fluctuation depending on simulated time in molecular dynamics simulation of C₁₂Cr monolayer at 2000 K after 5 ps simulation.

Fig. S6 (a) Separating one monolayer from neighboring four layers. (b) Cleavage energy as a function of the separation distance for a fracture in $C_{12}Cr$ bulk.

Fig. S7 Crystal orbital Hamilton population (COHP) between C atoms and Cr atoms of C₁₂Cr monolayer. The Fermi level in COHP figures is set to 0 eV.

Fig. S8 Chemical bonding picture of C₁₂Cr monolayer.

Fig. S9 Chemical bonding picture of $Cr(C_{54}H_{18})_2$.

Fig. S10 Phonon dispersion of C48Cr monolayer.

Fig. S11 Energy fluctuation depending on simulated time in molecular dynamics simulation of C₄₈Cr monolayer at 500 K after 5 ps simulation.

Fig. S12 Energy fluctuation depending on simulated time in molecular dynamics simulation of C₄₈Cr monolayer at 1000 K after 5 ps simulation.

Fig. S13 Energy fluctuation depending on simulated time in molecular dynamics simulation of C₄₈Cr monolayer at 1500 K after 5 ps simulation.

Fig. S14 Energy fluctuation depending on simulated time in molecular dynamics simulation of C₄₈Cr monolayer at 2000 K after 5 ps simulation.

Fig. S15 Total energy and a snapshot of C₄₈Cr monolayer with 8 O₂ molecules after a 5 ps AIMD simulation at 300 K.

Fig. S16 (a) Separating one monolayer from neighboring four layers. (b) Cleavage energy as a function of the separation distance for a fracture in $C_{48}Cr$ bulk.

Fig. S17 ELF contour planes in the graphene layer (top) and in the Cr and C plane (below).

Fig. S18 Crystal orbital Hamilton population (COHP) between C atoms and Cr atoms of C₄₈Cr monolayer. The Fermi level in COHP figures is set to 0 eV.

Fig. S19 SSAdNDP analysis showing localized C-C 2c-2e and 13c-2e C₆CrC₆ orbitals of C₄₈Cr monolayer.

Table S1 The elastic constants (N/m), Young's modulus (N/m), and Poisson's ratio of the C₄₈Cr monolayer.

	C ₁₁	C ₁₂	C66	Y_{2D}	v
C48Cr	704.58	128.17	288.21	681.27	0.182

Lattice parameters (Å, °)		Wyckoff positi	on, fractional c	oordinates
		x	У	Ζ
a = b = 4.33	С	0.00000	0.33114	0.41863
c=20	С	0.00000	0.66885	0.58136
lpha=eta=90	С	0.66885	0.66885	0.41863
$\gamma = 120$	С	0.33114	0.33114	0.58136
	С	0.33114	0.00000	0.41863
	С	0.66885	0.00000	0.58136
	С	0.00000	0.66885	0.41863
	С	0.00000	0.33114	0.58136
	С	0.33114	0.33114	0.41863
	С	0.66885	0.66885	0.58136
	С	0.66885	0.00000	0.41863
	С	0.33114	0.00000	0.58136
	Cr	0.00000	0.00000	0.50000

Structural information of $C_{12}Cr$ monolayer

CONTCAR

$C_{12}Cr$

1.00000000000000

4.3358396679504736	0.00000000000000000000000000000000000	0.0000000000000000000000000000000000000
-2.1679198339752368	3.7549472992437405	0.0000000000000000000000000000000000000
0.00000000000000000	0.0000000000000000000000000000000000000	0.00000000000000000

C Cr

12 1

Direct

-0.000000000000017	0.3311484600076313	0.4186327284096203
0.000000000000017	0.6688515399923686	0.5813673015903822
0.6688515399923668	0.6688515399923686	0.4186327284096203
0.3311484600076331	0.3311484600076314	0.5813673015903822
0.3311484600076348	0.00000000000000000	0.4186327284096203
0.6688515399923650	0.00000000000000000	0.5813673015903822
0.000000000000017	0.6688515399923686	0.4186327284096203
-0.000000000000017	0.3311484600076313	0.5813673015903822
0.3311484600076330	0.3311484600076313	0.4186327284096203

0.6688515399923668	0.6688515399923686	0.5813673015903822
0.6688515399923650	0.000000000000000000	0.4186327284096203
0.3311484600076348	0.000000000000000000	0.5813673015903822
-0.00000000000000000	0.0000000000000000000	0.500000000000000000

Lattice parameters (Å, °)		Wyckoff positi	on, fractional co	oordinates
		x	У	Z
a = b = 8.56	С	0.50220	0.66689	0.10924
c = 20	С	0.66713	0.66568	0.11084
$\alpha = \beta = 90$	С	0.83495	0.83350	0.11314
$\gamma = 120$	С	0.00226	0.66568	0.11082
	С	0.16841	0.66690	0.10920
	С	0.33617	0.83466	0.10921
	С	0.50219	0.83464	0.10924
	С	0.66713	0.00080	0.11085
	С	0.83495	0.00079	0.11315
	С	0.50203	0.66680	0.34403
	С	0.66696	0.66559	0.34248
	С	0.83480	0.83343	0.34034
	С	0.00209	0.66561	0.34251
	С	0.16823	0.66681	0.34405
	С	0.33600	0.83455	0.34403
	С	0.50203	0.83455	0.34403
	С	0.66697	0.00072	0.34249
	С	0.83479	0.00070	0.34035
	С	0.00227	0.83351	0.11312
	С	0.16955	0.00080	0.11310
	С	0.33740	0.00082	0.11079
	С	0.50232	0.16696	0.10920
	С	0.66835	0.16695	0.10923
	С	0.83611	0.33471	0.10925
	С	0.00225	0.16809	0.11313
	С	0.16954	0.16810	0.11312
	С	0.33739	0.33593	0.11081
	С	0.50230	0.33470	0.10920
	С	0.66835	0.50074	0.10923
	С	0.83610	0.50075	0.10925

Structural information of C₄₈Cr monolayer

С	0.00226	0.33593	0.11083
С	0.16840	0.50086	0.10921
С	0.33616	0.50087	0.10922
С	0.00211	0.83344	0.34036
С	0.16940	0.00073	0.34035
С	0.33722	0.00071	0.34249
С	0.50214	0.16686	0.34402
С	0.66817	0.16686	0.34403
С	0.83593	0.33463	0.34405
С	0.00208	0.16801	0.34034
С	0.16938	0.16802	0.34033
С	0.33722	0.33584	0.34249
С	0.50214	0.33462	0.34403
С	0.66818	0.50064	0.34404
С	0.83593	0.50065	0.34405
С	0.00209	0.33584	0.34250
С	0.16823	0.50077	0.34406
С	0.33600	0.50078	0.34404
Cr	0.00224	0.00079	0.22673

CONTCAR

C₄₈Cr

```
1.000000000000000
```

8.5674573337053097	0.00000000000000000	0.0000000000000000000000000000000000000
-4.2838079128217972	7.4197174297130859	0.00000000000000000
0.0000000000000000000000000000000000000	0.00000000000000000	15.00000000000000000

C Cr

48 1

Direct

0.5021963826564075	0.6668880620656950	0.1092362377798608
0.6671294126300111	0.6656798884387385	0.1108425844568970
0.8349516490405691	0.8335015690403864	0.1131411331607026
0.0022634066173097	0.6656843428165615	0.1108228476294784
0.1684063823126749	0.6669007717651851	0.1092044642011345
0.3361688364148350	0.8346576700768082	0.1092115697739828
0.5021936188840002	0.8346412935393630	0.1092363035617865

0.6671255361837609	0.0007968125927533	0.1108474814490350
0.8349540414436589	0.0007937135140210	0.1131472832413323
0.5020300526894772	0.6668005044170400	0.3440264151143708
0.6669631013280934	0.6655875383290777	0.3424774345002959
0.8347981986619359	0.8334259850509653	0.3403403107491556
0.0020867128068502	0.6656067879795842	0.3425115413997091
0.1682331247119535	0.6668101978565133	0.3440534895911824
0.3360001658167278	0.8345542058665032	0.3440342778470935
0.5020269183284043	0.8345502503319437	0.3440289365183418
0.6669703633329220	0.0007156591507638	0.3424903465736406
0.8347879695046814	0.0006998713334170	0.3403456746226610
0.0022653931246026	0.8335060070695448	0.1131183899183696
0.1695490658166747	0.0008043313516310	0.1131001413888271
0.3374032848000894	0.0008207329585588	0.1107890717549012
0.5023218217318899	0.1669574367195992	0.1091960075980722
0.6683464873240652	0.1669478276701284	0.1092341557995127
0.8361051240986228	0.3347149536333447	0.1092518346847555
0.0022460684056753	0.1680933925749954	0.1131318901892797
0.1695437223461553	0.1680977236560821	0.1131173818469549
0.3373895369985149	0.3359286595076014	0.1108129872542278
0.5023046773339601	0.3347036258694800	0.1092018436818947
0.6683481898412253	0.5007381550334884	0.1092298265220393
0.8361011152067306	0.5007476400667557	0.1092477731011101
0.0022571823927677	0.3359261252439936	0.1108281250604719
0.1684016613834061	0.5008618651932011	0.1092087939915842
0.3361597746631091	0.5008737638977010	0.1092195916979080
0.0021055571499602	0.8334430172262302	0.3403594374470487
0.1693987382470041	0.0007273533932377	0.3403494386909429
0.3372202759765557	0.0007093694212088	0.3424912917950209
0.5021431946877044	0.1668629572292559	0.3440198529687208
0.6681670659108008	0.1668605119991327	0.3440261847683246
0.8359262962260061	0.3346277873509180	0.3440455065719092
0.0020760594452227	0.1680053633003880	0.3403381287440652
0.1693816735091005	0.1680194232810592	0.3403283318885713
0.3372199808969114	0.3358398455198426	0.3424856363781359
0.5021422010849861	0.3346236129165092	0.3440271701213007
0.6681757096507468	0.5006441764461016	0.3440423303952471
0.8359339002319643	0.5006532825300383	0.3440540107077794
0.0020900919011240	0.3358446447262793	0.3425028652105411
0.1682348592023075	0.5007720394993669	0.3440637661021313
0.3359966710846862	0.5007778960696712	0.3440433701797261
0.0022383859631461	0.0007913574793292	0.2267266003699007