# Supplemental: Ab-initio Calculations of Vibrational Fingerprints in the Photoluminescence of Graphene Quantum Dots

Ruoyu Wu,<sup>1</sup> Peng Han,<sup>1,\*</sup> Tobias Dittmann,<sup>2</sup> Fuhe Wang,<sup>1</sup> Yan Zhang,<sup>1</sup> and Gabriel Bester<sup>2,3,†</sup>

<sup>1</sup>Department of Physics, Beijing Key Lab for Metamaterials and Devices, Capital Normal University, Beijing 100048, China <sup>2</sup>Departments of Chemistry and Physics, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany <sup>3</sup>The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany (Dated: October 28, 2024)

In this supplementary document, we supply information concerning the geometry and electronic structures of all the graphene quantum dots (GQDs) studied in the paper, the characters of nine dominated Huang-Rhys (HR) active vibrational modes of GQDs, and explain the videos of these HR active modes in GQDs with various geometry structures and edge orientation. Moreover, the photoluminescence (PL) spectrum of hex-zig GQDs with L = 19.6 Å and 29.4 Å along with the separately plotted exciton-induced atomic displacements for GQDs with different geometry and edge structures are also presented.

### I. GEOMETRY STRUCTURES OF GQDS

In Fig. S1, we present the geometry structures of all the GQDs we studied in the paper. The carbon and hydrogen atoms are presented as cyan and white spheres, respectively. The atomic structures along with the keywords "hex", "tri", and "arm", which have been defined in the paper, are given above the geometry structures.

### II. ELECTRONIC STRUCTURES OF GQDS

In Fig. S2, we present the calculated electronic structures of all the GQDs we studied in the paper within the framework of local density approximation and Trouiller-Martin normconserving pseudopotentials. The occupied and un-occupied electronic states are plotted as solid red and blue lines, respectively. The degeneracy of electronic states beyond one-folded obtained from our density functional theory calculation (DFT) calculation is presented around the energy level. To understand the effect of symmetry on the degeneracy of electronic states, we labeled the point group symmetry for each GQD obtained from density functional theory calculation.

<sup>\*</sup>E-mail:peng.han@cnu.edu.cn

<sup>&</sup>lt;sup>†</sup>E-mail:gabriel.bester@uni-hamburg.de

(a) hex-arm C12H18 (b) hex-arm C8H12 (c) hex-arm C12H30 (c) hex-arm C12H30 (d) tri-arm C30H18 (e) tri-arm C90H30 (f) tri-arm C120H36 (g) hex-arig C12H16 (h) hex-arig C7SH22 (i) hex-arig C12H26 (j) hex-arig C12H26 (k) hex-arig C20H38 (k) hex-arig C20H38 (k) hex-arig C20H38

FIG. S1: Geometry structures of GQDs we studied in this work along with their atomic structures. The names given above the structures are used as the keywords throughout the paper.

### III. CHARACTERS OF NINE DOMINATED HR ACTIVE MODES

In Table II of the main paper, we present nine dominant HR active modes of hexagonal GQDs with zigzag and armchair edge structures and triangle GQDs with armchair edges along with their origination. In the follows, we list the characters of these modes with detailed descriptions in Table S1.

TABLE S1: Nine dominant HR active vibrational modes of hexagonal (hex) and triangular (tri) GQDs with zigzag (zig) and armchair (arm) edge structures.

| Mode | GQDs    | character                                                            | remark              |
|------|---------|----------------------------------------------------------------------|---------------------|
| 1    | tri-arm | oblate-prolate, but distorted because of the triangular              | oblate-prolate mode |
| 2    |         | ring breathing mode                                                  | ring breathing mode |
| 3    |         | rings get to square, like in mode 5 but in the entire structure      | ring-to-square mode |
| 4    | hex-arm | oblate-prolate                                                       | oblate-prolate mode |
| 5    |         | ring-breathing mode                                                  | ring breathing mode |
| 6    |         | ring get to square, but in entire structure                          | ring-to-square mode |
|      |         | but in entire structure                                              |                     |
| 7    | hex-zig | oblate-prolate vibration                                             | oblate-prolate mode |
| 8    |         | ring-breathing mode, longitudinal optical                            | ring breathing mode |
| 9    |         | only rings in the middle [001] plane move, the rings get to squares, | ring-to-square mode |
|      |         | 4 atoms out of 6 move, transverse optical                            |                     |



FIG. S2: Electronic structures of GQDs we studied in this work along with their atomic structures and the corresponding point group symmetry. The occupied and un-occupied electronic states are presented as red and blue lines, respectively. The degeneracy of electronic states beyond one-folded is presented.



FIG. S3: Calculated PL intensity (black lines) including only class 1 transitions and HR factors (red bars) for hex-zig GQDs with sizes of L = 19.6 Å and 29.4 Å. The ZPL is shifted to zero relative energy and is normalized to one.

#### IV. PL SPECTRUM OF HEX-ZIG GQDS WITH L = 19.6 Å AND 29.4 Å

In Fig. S3, we present the calculated PL spectrum of hex-zig GQDs with sizes of L = 19.6 Å and 29.4 Å using a broadening of 2 meV as solid black lines. The calculated HR factors are presented as solid red bars in Fig. S3. To focuse on the phonon sidebands of PL spectrum, we plot the PL spectrum as a function of the relative energy to the zero phonon line (ZPL) and normalized the intensity of ZPL to one.

#### V. LATTICE DISPLACEMENT VS. DISTANCE TO GQD CENTER

In Fig. S4, we separately plot the calculated exciton-induced atomic displacements as a function of distance to the GQD center for GQDs with different geometry and edge structures.



FIG. S4: Exciton-induced atomic displacements as a function of distance to the GQD center for GQDs with different geometry and edge structures.

## VI. VISUALIZATION OF HR ACITVE VIBRATIONAL MODES IN GQDS

In the supplementary material part of the submission, we present illustrative movies of the confined acoustic modes, the coherent acoustic modes and in-plane vibrated acoustic modes of GQDs with various sizes, geometry shapes and edge structures. The details of the video files are given in Table S2.

| File name            | Mode                | GQD shape and edge | atomic structure                  | size $L$ (Å) | Frequency $(cm^{-1})$ |
|----------------------|---------------------|--------------------|-----------------------------------|--------------|-----------------------|
| mode1-trzarmL13A.mp4 | oblate-prolate mode | • • • • • • •      | -                                 |              | 294.54                |
| mode2-trzarmL13A.mp4 | ring breathing mode | tri-arm            | $C_{36}H_{18}$                    | 12.5         | 1416.86               |
| mode3-trzarmL13A.mp4 | ring-to-square mode |                    |                                   |              | 1673.11               |
| mode1-trzarmL21A.mp4 | oblate-prolate mode |                    |                                   |              | 189.54                |
| mode2-trzarmL21A.mp4 | ring breathing mode | tri-arm            | $C_{90}H_{30}$                    | 21.0         | 1398.82               |
| mode3-trzarmL21A.mp4 | ring-to-square mode |                    |                                   |              | 1668.00               |
| mode1-trzarmL25A.mp4 | oblate-prolate mode |                    |                                   |              | 163.26                |
| mode2-trzarmL25A.mp4 | ring breathing mode | tri-arm            | $\mathrm{C}_{126}\mathrm{H}_{36}$ | 25.1         | 1391.86               |
| mode3-trzarmL25A.mp4 | ring-to-square mode |                    |                                   |              | 1666.11               |
| mode4-hexarmL13A.mp4 | oblate-prolate mode |                    |                                   |              | 277.08                |
| mode5-hexarmL13A.mp4 | ring breathing mode | hex-arm            | $\mathrm{C}_{42}\mathrm{H}_{18}$  | 12.8         | 1311.18               |
| mode6-hexarmL13A.mp4 | ring-to-square mode |                    |                                   |              | 1667.24               |
| mode4-hexarmL18A.mp4 | oblate-prolate mode |                    |                                   |              | 202.68                |
| mode5-hexarmL18A.mp4 | ring breathing mode | hex-arm            | $\mathrm{C}_{84}\mathrm{H}_{24}$  | 17.9         | 1404.55               |
| mode6-hexarmL18A.mp4 | ring-to-square mode |                    |                                   |              | 1672.09               |
| mode4-hexarmL23A.mp4 | oblate-prolate mode |                    |                                   |              | 165.27                |
| mode5-hexarmL23A.mp4 | ring breathing mode | hex-arm            | $\mathrm{C}_{122}\mathrm{H}_{30}$ | 22.5         | 1390.05               |
| mode6-hexarmL23A.mp4 | ring-to-square mode |                    |                                   |              | 1668.74               |
| mode7-hexzigL12A.mp4 | oblate-prolate mode |                    |                                   |              | 272.13                |
| mode8-hexzigL12A.mp4 | ring breathing mode | hex-zig            | $C_{42}H_{16}$                    | 11.5         | 1423.04               |
| mode9-hexzigL12A.mp4 | ring-to-square mode |                    |                                   |              | 1690.80               |
| mode7-hexzigL17A.mp4 | oblate-prolate mode |                    |                                   |              | 204.57                |
| mode8-hexzigL17A.mp4 | ring breathing mode | hex-zig            | $\mathrm{C}_{78}\mathrm{H}_{22}$  | 17.1         | 1424.15               |
| mode9-hexzigL17A.mp4 | ring-to-square mode |                    |                                   |              | 1688.17               |
| mode7-hexzigL20A.mp4 | oblate-prolate mode |                    |                                   |              | 177.93                |
| mode8-hexzigL20A.mp4 | ring breathing mode | hex-zig            | $\mathrm{C}_{112}\mathrm{H}_{26}$ | 19.6         | 1423.83               |
| mode9-hexzigL20A.mp4 | ring-to-square mode |                    |                                   |              | 1692.45               |
| mode7-hexzigL27A.mp4 | oblate-prolate mode |                    |                                   |              | 136.43                |
| mode8-hexzigL27A.mp4 | ring breathing mode | hex-zig            | $\mathrm{C}_{190}\mathrm{H}_{34}$ | 26.9         | 1423.78               |
| mode9-hexzigL27A.mp4 | ring-to-square mode |                    |                                   |              | 1689.63               |
| mode7-hexzigL29A.mp4 | oblate-prolate mode |                    |                                   |              | 122.37                |
| mode8-hexzigL29A.mp4 | ring breathing mode | hex-zig            | $C_{240}H_{38}$                   | 29.4         | 1423.74               |
| mode9-hexzigL29A.mp4 | ring-to-square mode |                    |                                   |              | 1691.41               |
| mode-E1.mp4          | oblate-prolate mode |                    |                                   |              | 181.20                |
| mode-E2.mp4          | oblate-prolate mode |                    |                                   |              | 182.75                |
| mode-E3.mp4          | ring breathing mode |                    |                                   |              | 1270.42               |
| mode-E4.mp4          | ring breathing mode | tri-arm            | $\mathrm{C}_{96}\mathrm{H}_{30}$  | 18.2         | 1315.81               |
| mode-E5.mp4          | ring breathing mode |                    |                                   |              | 1348.25               |
| mode-E6.mp4          | ring-to-square mode |                    |                                   |              | 1582.90               |
| mode-E7.mp4          | ring-to-square mode |                    |                                   |              | 1597.79               |
| mode-E8.mp4          | ring-to-square mode |                    |                                   |              | 1612.53               |

TABLE S2: Videos of vibration

[S1] H. Raza, Edge and passivation effects in armchair graphene nanoribbons Phys. Rev. B, 84, 165425 (2011).