Electronic Supporting Information

Unravelling Structural Insights into Ligand-Induced Photoluminescence Mechanisms of Sulfur Dots

Satya Ranjan Sahoo^{a,b}, Arun Mukhopadhyay^{a,b}, Sukhendu Mahata^{a,b}, Komal Kumari^c, N. V. S. Praneeth^e, Ananya Baksi^d, Saumyakanti Khatua^e, Sumit Saha^{a,b}, Surajit Rakshit^c, and Nirmal Goswami^{*a,b}

^aMaterials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.

^cDepartment of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India

^dDepartment of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India

^eDepartment of Chemistry, Indian Institute of Technology-Gandhinagar, Palaj 382355, Gujarat, India.

*Corresponding Author's Email: ngoswami@immt.res.in

TABLE OF CONTENT

Name	Description	Page No.
Figure S1.	UV-vis spectra of (a) S-QD and (b) S-QD_4%. Excitation-dependent PL Spectra of (c) S-QD and (d) S-QD_4%. Inset: Photographs of S-QD and S-QD_4% respectively in visible and UV light (365 nm).	5
Figure S2.	UV-vis spectra of (a) S-QD@EG, (b) S-QD@EG_0.75%, and (c) S-QD@EG_4%. Excitation-dependent PL Spectra of (d) S-QD@EG, (e) S-QD@EG_0.75%, and (f) S-QD@EG_4%. Inset: Photographs of S-QD@EG, S-QD@ EG_0.75%, and S- QD@ EG_4% respectively in visible and UV light (365 nm).	5
Figure S3.	UV-vis spectra of (a) S-QD@Gly, (b) S-QD@Gly_0.75%, and (c) S-QD@Gly_4%. Excitation-dependent PL Spectra of (d) S-QD@Gly, (e) S-QD@Gly_0.75%, and (f) S-QD@Gly_4%. Inset: Photographs of S-QD@Gly, S-QD@Gly_0.75%, and S- QD@Gly_4% respectively in visible and UV light (365 nm).	6
Figure S4.	UV-vis spectra of (a) S-QD@TA, (b) S-QD@TA _0.75%, and (c) S-QD@TA _4%. Excitation-dependent PL Spectra of (d) S-QD@ TA, (e) S-QD@ TA _0.75%, and (f) S-QD@TA _4%. Inset: Photographs of S-QD@TA, S-QD@TA _0.75%, and S-QD@TA _4% respectively in visible and UV light (365 nm).	6-7
Figure S5.	UV-vis spectra of (a) S-QD@MHA, (b) S-QD@MHA_0.75%, and (c) S-QD@MHA_4%. Excitation-dependent PL Spectra of (d) S-QD@MHA, (e) S-QD@MHA_0.75%, and (f) S-QD@MHA_4%. Inset: Photographs of S-QD@MHA, S-QD@MHA_0.75%, and S-QD@MHA_4% respectively in visible and UV light (365 nm).	7
Figure S6.	UV-vis spectra of (a) S-QD@MSA, (b) S-QD@MSA_0.75%, and (c) S-QD@MSA_4%. Excitation-dependent PL Spectra of (d) S-QD@MSA, (e) S-QD@MSA_0.75%, and (f) S-QD@MSA_4%. Inset: Photographs of S-QD@MSA, S-QD@MSA_0.75%, and S-QD@MSA_4% respectively in visible and UV light (365 nm).	8
Figure S7.	UV-vis (black solid line), PL emission spectra (blue solid line), and excitation spectra (red dash line) of (a) S-QD@GSH_0%, (c) S-QD@GSH_Green and (d) S-QD@GSH_Blue. Inset: Photographs of S-QD@GSH, S-QD@GSH_Green, and S-QD@GSH_Blue respectively in visible and UV light (365 nm). Excitation-dependent PL Spectra of (d) S-QD@GSH, (e) S-QD@GSH_0.75%, and (f) S-QD@GSH_4%.	8-9
Figure S8.	UV-vis spectra of (a) S-QD@BA, (b) S-QD@BA_0.75%, and (c) S-QD@BA_4%. Excitation-dependent PL Spectra of (d) S-QD@BA, (e) S-QD@BA_0.75%, and (f) S-QD@BA_4%. Inset: Photographs of S-QD@BA, S-QD@BA_0.75%, and S- QD@BA_4% respectively in visible and UV light (365 nm).	9
Figure S9.	UV-vis spectra of (a) S-QD@ABA, (b) S-QD@ABA_0.75%, and (c) S-QD@ABA_4%. Excitation-dependent PL Spectra of (d) S-QD@ABA, (e) S-QD@ABA_0.75%, and (f) S-QD@ABA_4%. Inset: Photographs of S-QD@ABA, S-QD@ABA_0.75%, and S-QD@ABA_4% respectively in visible and UV light (365 nm).	10
Figure	UV-vis spectra of (a) S-QD@HBA, (b) S-QD@HBA_0.75%, and (c) S-	10-11

S10.	QD@HBA_4%. Excitation-dependent PL Spectra of (d) S-QD@HBA, (e) S-QD@HBA_0.75%, and (f) S-QD@HBA_4%. Inset: Photographs of S-QD@HBA, S-QD@HBA_0.75%, and S-QD@HBA_4% respectively in visible and UV light (365 nm).					
Figure S11.	PL spectra of (a) S-QD@MBA_Green (grey line), S-QD@GSH_Green (red line), and S-QD@PEG_Green (blue line). (b) S-QD@MBA_Blue (grey line), S- QD@GSH_Blue (red line), and S-QD@PEG_Blue (blue line).	11				
Figure S12.	UV-vis (black solid line), PL emission spectra (blue solid line), and excitation spectra (red dash line) of (a) S-QD@PEG_0%, (c) S-QD@PEG_Green and (d) S-QD@PEG_Blue. Inset: Photographs of S-QD@PEG, S-QD@PEG_Green, and S-QD@PEG_Blue respectively in visible and UV light (365 nm). Excitation-dependent PL Spectra of (d) S-QD@PEG, (e) S-QD@PEG_0.75%, and (f) S-QD@PEG_4%.					
Figure S13.	Excitation-dependent PL Spectra of (a) S-QD@MBA, (b) S-QD@MBA_Green, and (c) S-QD@MBA_Blue.					
Figure S14.	3D PL excitation(y-axis) emission(x-axis) intensity spectra of (a) S-QD@GSH, (b) S-QD@GSH_Green, and (c) S-QD@GSH_Blue.	12				
Figure S15.	HRTEM image showing (a) d-spacing and (b) SAED pattern of S-QD@MBA_Blue.	12				
Figure S16.	XPS Survey spectra of (a) S-QD@MBA_Green and (b) S-QD@MBA_Blue.	13				
Figure S17.	Plots of PL intensity of (a) Quinine (referenced dye), (b) S-QD@MBA_Blue, and (c) S-QD@GSH_Blue as a function of optical absorbance at 346 nm.	13				
Table S1.	PL QY calculation S-QD@MBA_Blue and S-QD@GSH_Blue.	13				
Table S2.	PL lifetimes obtained from exponential fittings of experimental PL decays detected at different wavelengths for S-QD@MBA_Green and S-QD@MBA_Blue.	14				
Figure S18.	UV-vis spectra of (a) MBA and (b) MBA _4%. PL spectra of (c) MBA (d) MBA _4% at different excitation wavelengths.	15				
Figure S19.	PL spectra of (a) GSH (b) GSH _4% (c) PEG (d) PEG _4% at different excitation wavelengths.	15-16				
Figure S20.	ESI MS of S6 series compared with their theoretically calculated isotope patterns of respective species.	16				
Figure S21.	ESI MS of S4 series compared with their theoretically calculated isotope patterns of respective species.	16				
Figure S22.	Concentration-dependent normalized PL excitation and emission spectra of (a) S-QD@GSH Green and (b) S-QD@MBA Green.	17				
Figure S23.	PL excitation and emission spectra of S-QD@MBA at 4% and 8% of H2O2 concentration.	17				
Figure	PL Spectra of (a) S-QD@MBA_Blue and (b) S-QD@GSH_Blue after treating with 80% ethanol	18				
Figure S25.	FTIR spectra of solid precipitate obtained after adding ethanol to S-QD@MBA_Blue (red line) and S-QD (grey line) and compared with MBA ligand (blue line).	18				

Figure	PL Spectra of Naked S-QD (red solid line) and naked S-QD + Phenyl Sulfonic	10
S26.	Acid (50mM) (blue solid line).	19

Figure S1. UV-vis spectra of **(a)** S-QD and **(b)** S-QD_4%. Excitation-dependent PL Spectra of **(c)** S-QD and **(d)** S-QD_4%. Inset: Photographs of S-QD and S-QD_4% respectively in visible and UV light (365 nm).

Figure S2. UV-vis spectra of (a) S-QD@EG, (b) S-QD@EG_0.75%, and (c) S-QD@EG_4%. Excitationdependent PL Spectra of (d) S-QD@EG, (e) S-QD@EG_0.75%, and (f) S-QD@EG_4%. Inset: Photographs of S-QD@EG, S-QD@ EG_0.75%, and S-QD@ EG_4% respectively in visible and UV light (365 nm).

Figure S3. UV-vis spectra of **(a)** S-QD@Gly, **(b)** S-QD@Gly_0.75%, and **(c)** S-QD@Gly_4%. Excitationdependent PL Spectra of **(d)** S-QD@Gly, **(e)** S-QD@Gly_0.75%, and **(f)** S-QD@Gly_4%. Inset: Photographs of S-QD@Gly, S-QD@Gly_0.75%, and S-QD@Gly_4% respectively in visible and UV light (365 nm).

Figure S4. UV-vis spectra of (a) S-QD@TA, (b) S-QD@TA _0.75%, and (c) S-QD@TA _4%. Excitationdependent PL Spectra of (d) S-QD@ TA, (e) S-QD@ TA _0.75%, and (f) S-QD@TA _4%. Inset:

Photographs of S-QD@TA, S-QD@TA _0.75%, and S-QD@TA _4% respectively in visible and UV light (365 nm).

Figure S5. UV-vis spectra of **(a)** S-QD@MHA, **(b)** S-QD@MHA_0.75%, and **(c)** S-QD@MHA_4%. Excitation-dependent PL Spectra of **(d)** S-QD@MHA, **(e)** S-QD@MHA_0.75%, and **(f)** S-QD@MHA_4%. Inset: Photographs of S-QD@MHA, S-QD@MHA_0.75%, and S-QD@MHA_4% respectively in visible and UV light (365 nm).

Figure S6. UV-vis spectra of **(a)** S-QD@MSA, **(b)** S-QD@MSA_0.75%, and **(c)** S-QD@MSA_4%. Excitationdependent PL Spectra of **(d)** S-QD@MSA, **(e)** S-QD@MSA_0.75%, and **(f)** S-QD@MSA_4%. Inset: Photographs of S-QD@MSA, S-QD@MSA_0.75%, and S-QD@MSA_4% respectively in visible and UV light (365nm).

Figure S7. UV-vis (black solid line), PL emission spectra (blue solid line), and excitation spectra (red dash line) of **(a)** S-QD@GSH_0%, **(b)** S-QD@GSH_Green and **(c)** S-QD@GSH_Blue. Inset: Photographs of S-QD@GSH, S-QD@GSH_Green, and S-QD@GSH_Blue respectively in visible and UV light (365 nm). Excitation-dependent PL Spectra of **(d)** S-QD@GSH, **(e)** S-QD@GSH_0.75%, and **(f)** S-QD@GSH_4%.

8

Figure S8. UV-vis spectra of (a) S-QD@BA, (b) S-QD@BA_0.75%, and (c) S-QD@BA_4%. Excitationdependent PL Spectra of (d) S-QD@BA, (e) S-QD@BA_0.75%, and (f) S-QD@BA_4%. Inset: Photographs of S-QD@BA, S-QD@BA_0.75%, and S-QD@BA_4% respectively in visible and UV light (365 nm).

Figure S9. UV-vis spectra of **(a)** S-QD@ABA, **(b)** S-QD@ABA_0.75%, and **(c)** S-QD@ABA_4%. Excitationdependent PL Spectra of **(d)** S-QD@ABA, **(e)** S-QD@ABA_0.75%, and **(f)** S-QD@ABA_4%. Inset: Photographs of S-QD@ABA, S-QD@ABA_0.75%, and S-QD@ABA_4% respectively in visible and UV light (365 nm).

Figure S10. UV-vis spectra of **(a)** S-QD@HBA, **(b)** S-QD@HBA_0.75%, and **(c)** S-QD@HBA_4%. Excitationdependent PL Spectra of **(d)** S-QD@HBA, **(e)** S-QD@HBA_0.75%, and **(f)** S-QD@HBA_4%. Inset: Photographs of S-QD@HBA, S-QD@HBA_0.75%, and S-QD@HBA_4% respectively in visible and UV light (365 nm).

Figure S11. PL spectra of **(a)** S-QD@MBA_Green (grey line), S-QD@GSH_Green (red line), and S-QD@PEG_Green (blue line). **(b)** S-QD@MBA_Blue (grey line), S-QD@GSH_ Blue (red line), and S-QD@PEG_ Blue (blue line).

Figure S12. UV-vis (black solid line), PL emission spectra (blue solid line), and excitation spectra (red dash line) of **(a)** S-QD@PEG_0%, **(b)** S-QD@PEG_Green and **(c)** S-QD@PEG_Blue. Inset: Photographs of S-QD@PEG, S-QD@PEG_Green, and S-QD@PEG_Blue respectively in visible and UV light (365 nm). Excitation-dependent PL Spectra of **(d)** S-QD@PEG, **(e)** S-QD@PEG_0.75%, and **(f)** S-QD@PEG_4%.

Figure S13. Excitation-dependent PL Spectra of (a) S-QD@MBA, (b) S-QD@MBA_Green, and (c) S-QD@MBA_Blue.

QD@GSH_Green, and (c) S-QD@GSH_Blue.

Figure S15. HRTEM image showing (a) d-spacing and (b) SAED pattern of S-QD@MBA_Blue.

Figure S16. XPS Survey spectra of (a) S-QD@MBA_Green and (b) S-QD@MBA_Blue.

Figure S17. Plots of PL intensity of **(a)** Quinine (referenced dye), **(b)** S-QD@MBA_Blue, and **(c)** S-QD@GSH_Blue as a function of optical absorbance at 346 nm.

Table S1. PL QY calculation S-QD@MBA_Blue and S-QD@GSH_Blue.

Sample Name	Slope	PL QY (in %)
Quinine	5015334.154	55% (reported)
S-QD@MBA_Blue	5124959.139	56.2% (calculated)
S-QD@GSH_Blue	788519.1168	8.6% (calculated)

Wavelength (nm)	$ au_1$		$ au_2$		$ au_{avg}$
	(ns)	A ₁	(ns)	A ₂	(ns)
410	1.2141	0.557142857	10.0972	0.442857143	5.148044286
450	1.1516	0.671232877	8.5558	0.328767123	3.585857534
480	1.8208	0.617647059	7.4273	0.382352941	3.964461765
530	2.5083	0.734375	7.131	0.265625	3.736204688
410	1.0436	0.068965517	7.8284	0.931034483	7.360482759
450	1.0756	0.086206897	7.6516	0.913793103	7.084703448
480	1.6446	0.285714286	7.5408	0.714285714	5.856171429
530	1.9029	0.833333333	7.5113	0.166666667	2.837633333
	Wavelength (nm) 410 450 480 530 410 530 410 530 450 430 530	Wavelength τ1 (nm) (ns) 410 1.2141 450 1.1516 480 1.8208 530 2.5083 410 1.0436 450 1.0756 480 1.6446 530 1.9029	Wavelength (nm) τ_1 (ns) A_1 4101.21410.5571428574501.15160.6712328774801.82080.6176470595302.50830.7343754101.04360.0689655174501.07560.0862068974801.64460.2857142865301.90290.833333333	Wavelength τ_1 (nm) τ_2 A14101.21410.55714285710.09724501.15160.6712328778.55584801.82080.6176470597.42735302.50830.7343757.1314101.04360.0689655177.82844501.07560.0862068977.65164801.64460.2857142867.54085301.90290.833333337.5113	Wavelength (nm) τ_1 (ns) τ_2 A1 (ns) π_2 (ns)4101.21410.55714285710.09720.4428571434501.15160.6712328778.55580.3287671234801.82080.6176470597.42730.3823529415302.50830.7343757.1310.2656254101.04360.0689655177.82840.9310344834501.07560.0862068977.65160.9137931034801.64460.2857142867.54080.7142857145301.90290.833333337.51130.166666667

Table S2. PL lifetimes obtained from exponential fittings of experimental PL decays detected at different wavelengths for S-QD@MBA_Green and S-QD@MBA_Blue.

14

Figure S18. UV-vis spectra of (a) MBA and (b) MBA _4%. PL spectra of (c) MBA (d) MBA _4% at different excitation wavelengths.

Figure S20. ESI MS of S_6 series compared with their theoretically calculated isotope patterns of respective species.

Figure S21. ESI MS of S_4 series compared with their theoretically calculated isotope patterns of respective species.

Figure S22. Concentration-dependent normalized PL excitation and emission spectra of (a) S-QD@GSH_Green and (b) S-QD@MBA_Green.

Figure S23. PL excitation and emission spectra of S-QD@MBA at 4% and 8% of H₂O₂ concentration.

Figure S24. PL Spectra of (a) S-QD@MBA_Blue and (b) S-QD@GSH_Blue after treating with 80% ethanol.

Figure S25. FTIR spectra of solid precipitate obtained after adding ethanol to S-QD@MBA_Blue (grey line), S-QD (red line) and compared with S-QD@MBA_Blue (Blue line), MBA ligand (green line) and S-QD (magenta line).

Figure S26. PL Spectra of Naked S-QD (red solid line) and naked S-QD + Phenyl Sulfonic Acid (50mM) (blue solid line).