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Université Paris-Saclay, BP 72, Châtillon Cedex, 92322, France

2Department of Chemistry and Materials Science, Aalto University, 02150 Espoo, Finland
3Department of Applied physics, Aalto University, FI-00076 Aalto, Espoo, Finland

4Interfaces, Confinement,Matériaux et Nanostructures (ICMN),
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Sec. I. Magnetic tight-binding model

In the following, a brief description of the key features
of our interatomic potential for treating magnetic
transition metals and its transferability is provided. For
the technical and theoretical aspects, a detailed account
of the TB model is given in the following references1,2

while the fitting of the parameters to reproduce the
energetic properties of Fe is presented.

In our study, the interaction between iron atoms is
treated within the semi-empirical tight-binding model3,4

where only d bands are taken into account. As in non-
magnetic systems, the total energy of an atom i is split
in two parts, a band structure term that describes the
formation of an energy band when atoms are assembled
and a repulsive term which empirically reflects the ionic
and electronic repulsions. We employ the recursion
method to calculate the local density of electronic
states ni(E) at all sites1,5. Exact calculations are made
of only the first four continued fraction coefficients,
(a1, b1, a2, b2) corresponding to the first four moments
of the local density of states. In addition, the magnetic
contribution is introduced via the Stoner model4,6 by
considering the physical presence of local exchange
fields in the band energy term giving rise to two spin
populations within the collinear approximation. Besides,
the fourth moment approximation (FMA) is a good
compromise for describing the structural properties of
transition metals1,2 while having a minimal description
of the density of states necessary to take into account
local magnetic on-site levels and thus define two spin
populations. Interestingly, the FMA model is highly
effective to enable a linear scaling of CPU working time
as a function of system size. This magnetic TB model
relies on local (atomic) energy calculations is coupled
with Monte Carlo (MC) simulations in order to relax
the structures where each trial corresponds to randomly
choosing an atom and its displacement as well as its local
magnetic moment. By performing this procedure several
times, it becomes possible to determine the equilibrium

properties of iron nanoparticles of various sizes in terms
of both position and magnetic state.

Sec. II. Iron tight-binding model

In case of transition metals, the electronic structure is
defined by a narrow d band hybridizing with a wider sp-
band corresponding to nearly free electrons. Given that
the cohesion properties of Fe are mainly driven by d− d
bonding, it is only necessary to include d orbitals in the
spin-polarised TB framework7. In our d band model, the
Slater-Koster parameters characterizing the hopping in-
tegrals (ddσ, ddπ and ddδ) are chosen according to the
ratio -2:1:0 and to decrease exponentially with the fol-
lowing distance dependence r between atoms:

ddλ(r) = ddλ0 exp

[
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r

r0
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)]
, (1)

where λ = σ, π, δ and q a parameter to be fitted. Regard-
ing the repulsive term, a Born-Mayer expression has been
adopted involving two additional parameters (A and p):
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To capture all magnetic effects, the Stoner exchange in-
tegral I is the only additional parameter to be included
in our TB model. This results in an energy contribu-
tion of − I

4m
2
i
8 where mi is the spin moment in µB units.

Indeed, mi = Ni ↑ −Ni ↓ with Ni ↑ and Ni ↓, respec-
tively the number of electrons in majority and minority
spin bands of an atom i. To get an efficient interatomic
potential, the parameters (ddσ, q, A, p and I) and the
number of electrons Nd have to be adjusted to reproduce
several bulk physical properties of Fe.
All the difficulty is to define the relevant quantities

specific to Fe, both from a structural and magnetic point
of view, for the development of an interatomic potential
with a high degree of transferability to study phase
transformation of magnetic Fe NPs. In the present work,
the TB parameters have been fitted on experimental
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ddσ q r0 A p I Nd

1.08 3.29 2.42 0.166 10.5 1.15 7.59

TABLE S1. Fe parameters for the magnetic TB-FMA model,
obtained by fitting to DFT reference data. ddσ, A and I are
in eV. r0 is in Å.

data and density functional theory (DFT) calculations
using the Vienna ab initio Simulation Package (VASP)
code9 to reproduce the lattice parameter, the cohesive
energy, the elastic moduli (bulk modulus and the two
shear moduli) and the magnetism state of α and β bulk
Fe phases at 0 K. The resulting parameter values are
given in Table S1.

Sec. III. Validity and transferability of the
tight-binding model

The TB parameters have been fitted on experimental
values for the FCC and BCC structures namely the lat-
tice parameter, the cohesive energy and the elastic mod-
uli (bulk modulus and the two shear moduli) as well as
their magnetic properties. All results are presented in
Table S2.

As already discussed10,11, ferromagnetism clearly
plays a major role in determining the stability of bulk
Fe structures. It is interesting to note that our model
successfully reproduces the main trends of this specific
physics. Indeed, when magnetism is not taken into ac-
count, the β structure is the most stable. Such behavior
of non-magnetic calculations has been highlighted in
previous calculations11,12. Nevertheless, magnetic cal-
culations correct this and reproduce the experimentally
stable phase, i.e. the ground-state FM α-Fe structure
which is also successfully predicted by the TB potential.
Moreover, regarding the dependencies of magnetic
moments as function of the lattice parameters, our TB
results are in agreement with the DFT calculations in
particular the increase in magnetic moment as the struc-
tures are expanded. To highlight how the ground state
is driven by the magnetism, the analysis of elastic con-
stants (Cij) is very relevant. In case of the cubic phase,
three independent elastic constants (C11, C12 and C44)
have to be considered, or even their combination giving
rise to the tetragonal shear modulus, C ′ = (C11−C12)/2,
and the bulk modulus, B = (C11 + 2C12)/3. Note that
a negative value means that the system is mechanically
unstable. As seen in Table S2, they are calculated for
non-magnetic and ferromagnetic BCC and FCC iron
from our TB model, and compared with experimental
as well as DFT results. It is immediately striking that
the general trends are perfectly reproduced by the TB
model. More specifically, it predicts correctly negative
values of C ′ for the NM BCC structure and a positive
one for the ferromagnetic BCC confirming its stability
respect to the tetragonal distortion. This particular

behaviour is perfectly illustrated in the analysis of the
energy along the Bain transformation path connecting
the BCC (c/a = 1) and FCC (c/a =

√
2) structures

and presented in Figure S1. Although the energy

FIG. S1. Bain path between the BCC and FCC phases in
case of NM and FM calculations.

difference between the ferromagnetic and non-magnetic
configurations is underestimated by the TB model, the
overall trend of the energy profile is in good agreement
with previous DFT calculations11. Consequently, it
can be seen that the TB model is not only well suited
to discriminate between the different magnetic phases
of Fe, but also has the ability to predict quite subtle
characteristics, such as the link between the magnetism
and the structural stability of the BCC phase under
tetragonal deformation. To go further in the validation
and transferability of the interatomic potential for
studying thermodynamic properties, it is fundamental
to assess its reliability at finite temperature. In this con-
text, the Curie temperature is investigated and results
are presented in Figure S2a. Our TB model predicts a
T∞

C around 500 K which is much lower than the experi-
mental value of 1043 K. Improving the accuracy of the
calculated Curie temperature can be done by tuning the
Stoner parameter as explained in Reference2. However,
it turns out that properties at 0K are more difficult
to reproduce in this case. Nevertheless, this deviation
in the calculation of the Curie temperature does not
prevent us from describing qualitatively structural and
magnetic properties of Fe NPs as we will see in the
following since all the results will be discussed in relation
to a value of T∞

C which is simply a reference in our
study. Again with the aim of studying the behaviour of
our TB model at finite temperature, Figure S2b displays
the temperature dependencies of the thermal expansion
coefficient in case of NM and FM calculations. A linear
variation is then observed for the NM case, in contrast
to the FM calculations where a contraction of the lattice
parameter is reported in agreement with experiments13.
Our TB model is therefore capable of capturing such
a feature, unlike many of the interatomic potentials
presented in the literature.
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NM NM FM FM

DFT TB-FMA DFT TB-FMA

BCC a (Å) 2.76 2.73 2.83 2.86

Ecoh (eV/at.) -3.81 -4.21 -4.28 -4.24

C11, C12, C44 (GPa) 89, 351, 186 219, 272, 87 278, 144, 97 157, 143, 95

FCC a (Å) 3.45 3.43 3.48 3.58

Ecoh (eV/at.) -4.12 -4.23 -4.13 -4.21

C11, C12, C44 (GPa) 430, 223, 244 306, 233, 81 318, 127, 178 179, 132, 58

TABLE S2. DFT and TB calculations of physical properties for non magnetic and magnetic bcc and fcc systems at 0 K.

FIG. S2. (a) Total magnetic moment average of a bulk Fe as a
function of temperature. (b) Average linear volume expansion
coefficient for Fe as a function of temperature (FM and NM
states).
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