$\begin{array}{c} \text{Supplementary information} \\ nanoFeatures \end{array}$

Cristina Izquierdo-Lozano, Niels van Noort, Marrit M.E. Tholen, Stijn Van Veen, Francesca Grisoni and Lorenzo Albertazzi

Parallel imaging (regular)

a)

	Α	В		D	E		G
1	Channel,"	Frame","x	[nm]","y [I	nm]","z [nr	m]","Photo	ons","Back	ground"
2	0.0,0.0,32	260.46484,	5844.90771	5,0.0,817.7	7533,72.71	5042	
3	0.0,0.0,33	911.44922,	7681.20459	,0.0,1683.7	29492,75.9	2112	
4	0.0,0.0,10	046.87305,9	9307.01171	9,0.0,923.2	57019,66.7	32193	
5	0.0,0.0,35	753.29688,	9991.79882	8,0.0,341.2	16125,71.7	41379	
6	0.0,0.0,45	56.910156,	11130.4550	8,0.0,601.4	82117,65.1	1586	
7	0.0,0.0,14	528.3418,1	1721.0791,0).0,373.687	836,67.233	795	
8	0.0,0.0,20	86.955078,	17702.3378	9,0.0,1454.	055176,71.	498871	
9	0.0,0.0,37	15.193604,:	18114.2480	5,0.0,2200.	593994,79.	355423	
10	0.0,0.0,21	285.32617,	19073.2519	5,0.0,400.6	85486,68.5	78102	
11	0.0,0.0,35	231.125,21	311.54297,0	0.0,385.904	449,71.158	775	

Sequential imaging

b)	 Nanoparticle files 					c)	c) Fiducial files															
	А	В	с		A	В	с	A	В	с		A	В	с	D	a A	В	С	D	a A	в	C
1	rame	x [nm]	y [nm]	1	frame	x [nm]	y [nm]	1 frame	x [nm]	y [nm]		1 frame	x [nm]	y [nm]	1	frame	x [nm]	y [nm]	1	frame	x[nm]	y [nm]
2	0	7307.872	1951.647	2	(7363.406	1735.91	2	0 7546.21	1680.216		2	0 3489.603	6900.082	2	(3656.334	6663.438	2	(3825.361	6576.667
3	0	1662.016	2648.908	3	(1794.816	2393.827	3	0 2024.37	2305.343		3	0 8094.37	9697.395	3	0	19283.11	16601.01	3	(19570.36	10718.49
-4	0	5099.18	5683.005	-4	(8135.06	2394.642	4	0 8188.89	2346.276		4	0 19361.5	11061.99	- 4		45827.71	28335.9	- 4	(19414.88	16512.69
5	0	6698.203	6201.544	5	(9183.889	2966.937	5	0 2825.3	3509.229		5	0 19094.9	5 16857.66	5	0	24637.62	35996.84	5	(46021.57	28319.22
6	0	3489.602	6900.082	6	(2515.735	3424.124	6	0 9133.810	4335.383		6	0 46120.02	29657.63	6	0	34120.31	36030.87	6	(18661.12	36086
7	0	1869.105	8655.568	7	(3104.182	4510.792	7	0 5543.255	5206.092		7	0 24468.0	36216.54	7	0	9067.146	43205.62	7	(24790.99	35940.01
8	0	4356.081	9169.511	8	(8981.386	4442.873	8	0 8123.39	5286.64		8	0 33956.5	6 36267.25	8	(27746.46	45184.69	8	(34264.54	35965.17
9	0	8094.372	9697.395	9		5334.45	5302.913	9	0 4857.89	5439.259		9	0 8932.48	6 43426.73	9		43565.73	45564.37	9	(9233.754	43134.78
10	0	3407.107	9789.003	10	(7967.793	5313.961	10	0 7103.56	5839.424		10	0 16823.6	6 44635.24	10) (24677.61	48937.27	1) (27887.48	45134.37
11	1	7344.915	1954.011	11	(4601.715	5652.734	11	0 1178.67	6246.028		11	0 27596.3	45426.05	1	1 (12260.79	53944.43	1	1 (17388.37	49142.81
12	1	5109.069	5663.059	12	(7011.969	5867.215	12	0 6499.419	6338,479		12	0 43340.3	45834.23	1	2 (20014.58	55949.18	1	2 (12416.88	53857.46
13	1	6701.735	6174.279	13	(969.6041	6317.58	13	0 3825.36	6576.667		13	0 10262.34	46110.94	1	3 (8930.568	56531.2	1	3 (20195.54	55878.71
14	1	3489.554	6892.08	14	(6290.015	6334.674	14	0 1149.97	7022.6		14	0 12094.6	54195.04	14	1 1	3649.479	6669.378	1	1 (9105.381	56477.18
15	1	1879.817	8643.871	15	(3656.334	6663.438	15	0 5263.27	7433.834		15	0 19903.8	56200.71	1	5 1	19247.48	16577.7	1	5 1	3819.092	6579.872
16	1	4353.894	9170.782	16	(5239.569	7451.168	16	0 7252.88	7465.379		16	0 45621.5	56648.38	10	5 1	45827.83	28324.31	1	5	19548.39	10724.38
17	1	8081.224	9695.866	17	(7265.304	7589.408	17	0 3452.28	8014.862		17	1 3489.55	6892.08	1	7 1	24630.55	35995.43	1	7	19419.5	16509.47
18	1	3431.033	9787.397	18	(3354.352	8192.906	18	0 2059.94	8235.64		18	1 19366.5	11072.19	10	3 1	34123.36	36031.98	1	3	46033.76	28318.01
19	2	2 7307.039	1966.92	19	(1822.348	8266.329	19	0 5711.18	8296.003		19	1 19091.73	16853.75	19	9 1	9063.454	43203.99	1	9	24780.23	35932.19
20	2	2 5115.289	5670.267	20		5763.41	8315.938	20	0 1447 73	8546.644		20	1 46106.0	29679.49	2) 1	27741.85	45191.23	2) :	18664.31	36087
21	2	6707.692	6208.225	21		5331.064	8926.054	21	0 5403 63	8801 664		21	1 24464.63	36245.44	2	1 1	43550.07	45574.6	2	1 3	34267.48	35963.17
22	2	3480.556	6898.968	22		3424.068	9446.25	22	0 8982 23	9117 756		22	1 33957.3	36267.72	2	2 1	10414.2	45843.57	2	2 3	9225.659	43130.42
23	2	1870.142	8649.673	23		8284.41	9452.361	23	0 3622.23	9350.737		23	1 28614.2	36760.11	2	3 1	24676.53	48932.59	2	3	27891.77	45129.96
	•	smallfo	ov_t1_pos2		4 F	small	ov_t2_pos2	()	small	lov_t3_pos2		- + - +	_t1_pc	s2_df5000_fid			_t2_po	s2_df5000_f	id		_t3_pos	s2_df5000_fid

Figure 1: Raw data example of nanoparticles imaged in super-resolution microscopy (DNA-PAINT), \mathbf{a}) all color channels imaged in the same acquisition and \mathbf{b}) three different color channels imaged sequentially, which has to include \mathbf{c}) the corresponding files containing the fiducial localizations.

Table 1:	Description	of the input	parameters	required	by	nanoFeatures.
----------	-------------	--------------	------------	----------	----	---------------

Parameter	Description				
Filters tab					
Input file	Files(s) to be analyzed by <i>nanoFeatures</i> .				
	Microscope or software the files were obtained from. Current options are				
Input type	Nikon (N-STORM), Oxford Nanoimager (ONI) and ThunderSTORM				
	(ImageJ plugin).				
	Checkbox to align the different channel colors in the case of exchange PAINT				
	(sequentially imaging each color instead of simultaneously). This filter is				
Channel alignment	based on fiducials, then the user would need to first input the different files				
	(one per color) and then nanoFeatures will ask to input the files containing				
	the fiducial localizations. This filter doesn't admit batch analysis.				

Silhouette metric	Checkbox to calculate the Silhouette coefficient for each cluster found by DBSCAN. This metric can be used while optimizing the parameters and measures how well the panoparticles are clustered. The closer to 1 the better					
Simolette metric	The calculation of this metric is computationally expensive if the images are too dense					
	Checkbox to perform the qPAINT analysis That is to calculate the actual					
qPAINT	number of molecular targets based on the number of localizations and binding					
	kinetics.					
Parameters tab						
DBSCAN clustering						
Scanning diameter	Diameter, in nanometers, used by DBSCAN to follow the density of points. Generally, it is the same as the size of the nanoparticles in the image. However, if these are too dense, it is better to set a smaller diameter.					
Minimum points	Minimum number of localizations that have to be contained in the scanning diameter to be considered a full cluster or part of a bigger cluster. Relates to the nanoparticle's density.					
Filtering						
Maximum aspect ratio	Maximum ellipticity of the nanoparticles, being 1 a perfect sphere.					
Desired aspect ratio	Theoretical shape of the nanoparticles being analyzed.					
Min. inter-cluster distance	Minimum separation, in nanometers, between nanoparticles. Generally, at least the same distance as their diameter.					
Maximum points	Maximum number of points for a cluster to be considered a nanoparticle.					
Particle size check						
Radius low limit	Lowest radius size, in nanometers, for a cluster to be considered a nanoparticle.					
Radius high limit	Highest radius size, in nanometers, for a cluster to be considered a nanoparticle					
Radius threshold	Fraction of the localizations within the radius. Sometimes some isolated localizations in a cluster might be further away from the actual radius and would be better to exclude them.					
Fiducial alignment	l					
Maximum inter-fiducial distance	Maximum separation, in nanometers, for fiducials in different channels to be considered the same. Avoids mismatching.					
qPAINT tab						
Options						
Filter non-specific clusters	Checkbox to filter out clusters that are not present for at least 50% of the imaging time.					
Initial frames cut	Number of frames to cut from the beginning of the imaging movie.					
Frames threshold	Allowed gap in between binding events for them to be still considered					
to merge	consecutive.					
Number of						
channels	Number of laser channels (colors) present in the analyzed images.					
Exposure time	Acquisition's exposure time, in milliseconds.					
Give information per	r channel					
(k_{on})	Association constant for each docking-imager pair, determined experimentally.					
(C_i)	Imager concentration.					
Graphs tab						
Loc/NP	Number of localizations per nanoparticle histogram.					
NP diam	Nanoparticle's diameter (size) histogram.					
Diam/locs	Nanoparticle's localizations compared to their size scatterplot.					
NP Td	True dark time per nanoparticle histogram.					

Figure 2: Before and after example of a density-filtered super-resolution microscopy image. In this case, an image of 300 nm nanoparticles was filtered by density with a radius of 25 nm and 10 minimum number of neighbors. Scale bar: 5μ m.

Figure 3: Time analysis of the *nanoFeatures* execution, comparing between parallel and sequential execution of the nine sections and with or without the Silhouette analysis. Note that sequential analysis is only apparent for the lower number of localizations due to rapidly increasing computational costs and memory requirements, resulting in the execution breaking.

Figure 4: Example of nanoFeatures output figures. In this case, for DNA-PAINT dual-color 200nm nanoparticles. **a**) Raw coordinates, plotted directly from the localization list input by the user. **b**) Identified nanoparticles by DBSCAN, after going through the quality filters and **c**) the zoom in. Colored clusters are the ones identified by DBSCAN and the circled clusters are selected by the quality filters. **d**) Selected nanoparticles colored based on the channel each localization was found in. **e**) normalized Cumulative Distribution Function (CDF) of each nanoparticle's dark times. **f**) Silhouette metric for each of the identified clusters by DBSCAN, from -1 (not clustered) to 1 (perfectly separated cluster). Note that the -1 group corresponds to the background localizations, discarded by DBSCAN. Group ID (given by DBSCAN) can be found by clicking in any of the localizations colored in *nanoFeature*'s figure 3 (**b**) in this figure).

Figure 5: qPAINT filter **a**) The first 50 frames of a binary particle time trace (black). Consecutive binding events (when the particle is 'bright') with a gap of up to three frames are merged into a single event, resulting in the merged time trace shown in red. **b**) Example of the dark time CDF for a cluster (red) superimposed with its fitted curve (black), computed using equation 1. **c**) All normalized CDFs for a measurement, colored by their R-squared value from a bad fit (red) to a good fit (green). CDFs with an unexpected shape (black) that go above the threshold (blue cross) are filtered out.

Feature	Description						
Diameter	The diameter of the cluster as determined by ellipse fit-ting from <i>nanoFeatures</i> .						
Aspect ratio (shape)	The aspect ratio (starting at one) of the ellipse fitted over the cluster by <i>nanoFeatures</i> .						
x-coordinate	The x-coordinate of the cluster center determined by <i>nanoFeatures</i> . This can be used for the reconstruction of cluster centers.						
y-coordinate	The y-coordinate of the cluster center determined by nanoFeatures. This can be used for the reconstruction of cluster centers.						
Cluster localizations	The total number of localizations in the cluster.						
For each channel							
Channel localizations	The number of localizations of the cluster that are in the corresponding channel.						
True mean dark time	The mean dark time of the localizations in the corresponding channel as deter- mined by qPAINT analysis through CDF fitting.						
R-squared	The goodness of fit of the CDF fitting expressed in R-squared.						
Mean dark time	The mean value of the dark times in the corresponding channel calculated during qPAINT calculations.						
Median dark time	The median value of the dark times in the corresponding channel calculated during qPAINT calculations.						
SD dark time	The standard deviation of the dark times in the corresponding channel calculated during qPAINT calculations.						
Mean bright time	The mean value of the bright times in the corresponding channel calculated during qPAINT calculations.						
Median bright time	The median value of the bright times in the corresponding channel calculated during qPAINT calculations.						
SD bright time	The standard deviation of the bright times in the corresponding channel cal- culated during qPAINT calculations.						
Target count	The number of binding sites for the corresponding channel as determined by qPAINT calculations using the true mean dark time and user-set parameters for acquisition frame rate and association constant (k_{on}) .						

Table 2: Description of the features obtained by nanoFeatures.

Table 3: Comparison of *nanoFeatures* to other available softwares to analyse super-resolution microscopy data. More open microscopy software packages (for SMLM and other techniques), can be found in this GitHub repository: https://github.com/HohlbeinLab/OpenMicroscopy/blob/main/src/OM_Software.md and https://srm.epfl.ch/srm/software/index.html

Software	Input data	Output data	Visualization	Clustering	Analysis & features
nanoFeatures	Localization files from di- verse SMLM formats	Single-parti- cle features (see sup- plementary Table 2)	Yes (scatter plots)	Yes (DB- SCAN)	localization merging, quality control, im- age alignment, quantitative analysis, and qPAINT.
SMAP [1]	Image, metadata and local- ization files from diverse SMLM for- mats	Processed images and localiza- tion files, plus cus- tom-made analysis out- puts.	Yes (renders and scatter plots)	Yes (diverse)	Image post-pro- cessing (drift correction, localization merging), rendering, ROI manager, and custom-made plugins (statis- tics, counting, tracking)
Bayesian cluster iden- tification in SMLM data [2]	Localization files from Thunder- STORM	Clustering proposals	Yes (scatter plots)	Yes (Bayesian)	
PYME [3]	Localization files (csv)	custom- made analy- sis outputs.	Yes (3D ren- ders)	Yes	Quality control, artifact cor- rection, image reconstruction and quantita- tive analysis.
Mars [4]	Image for- mats	Processed images, features, and cus- tom-made analysis out- puts based on Fiji	Yes (renders)	No	Image process- ing, classifica- tion, filtering, and interactive data explo- ration.
Thunder- STORM [5]	Raw SMLM data	Processed localization files and images	Yes (images and scatter plots)	No	Raw data pro- cessing, post- processing, and visualization and simulations.
Picasso [6]	Raw SMLM data, local- ization files and meta- data.	Processed images and localizations, and classifi- cation	Yes (renders)	Yes (diverse)	DNA-PAINT simulations, lo- calize, filter and post-processing

References

- Jonas Ries. "SMAP: a modular super-resolution microscopy analysis platform for SMLM data". en. In: *Nature Methods* 17.9 (Sept. 2020). Number: 9 Publisher: Nature Publishing Group, pp. 870– 872. ISSN: 1548-7105. DOI: 10.1038/s41592-020-0938-1.
- [2] Patrick Rubin-Delanchy et al. "Bayesian cluster identification in single-molecule localization microscopy data". In: *Nature methods* 12.11 (2015), pp. 1072–1076.
- [3] Zach Marin et al. "PYMEVisualize: an open-source tool for exploring 3D super-resolution data". In: Nature methods 18.6 (2021), pp. 582–584.
- [4] Nadia M Huisjes et al. "Mars, a molecule archive suite for reproducible analysis and reporting of single-molecule properties from bioimages". In: *Elife* 11 (2022), e75899.
- [5] Martin Ovesný et al. "ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging". In: *Bioinformatics* 30.16 (2014), pp. 2389–2390.
- Joerg Schnitzbauer et al. "Super-resolution microscopy with DNA-PAINT". en. In: Nature Protocols 12.6 (June 2017). Number: 6 Publisher: Nature Publishing Group, pp. 1198–1228. ISSN: 1750-2799. DOI: 10.1038/nprot.2017.024. (Visited on 01/31/2024).