Supporting Information

Biomass-derived substrates hydrogenation over Rhodium Nanoparticles Supported on Functionalized Mesoporous Silica

Israel T. Pulido-Díaz ^[a,b], Draco Martínez ^[a], Karla P. Salas-Martin ^[a], Benjamín Portales-Martínez ^[d], Antonio Reina ^[a], Dominique Agustín ^[b,c], Itzel Guerrero-Ríos ^{[a]*}

^a Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Circuito Escolar S/N, Coyoacán, Cd. Universitaria, 04510 Ciudad de México, México.

^b Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de Coordination (LCC), Université de Toulouse, UPS, INPT, 205, route de Narbonne, 31077 Toulouse, France

^c Université de Toulouse, IUT P. Sabatier, Département de Chimie, Av. G. Pompidou, BP 20258, 81104 Castres CEDEX, France

^d CONACYT, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Laboratorio Nacional de Conversión y Almacenamiento de Energía, Instituto Politécnico Nacional, Calzada Legaría 694, Col. Irrigación, Ciudad de México, 11500, México

TABLE OF CONTENTS

Α.	Infrared spectra	S2-S3
В.	TGA thermograms	S4
C.	Powder X-Ray Diffraction data	S5
D.	²⁹ Si UDEFT deconvolution data	S5
E.	¹³ C CP-MAS spectra.	S6
F.	Nitrogen adsorption/desorption isotherms	S7
G.	TEM and SEM micrographs with EDX analysis of pristine SBA-15	S8-S9
Н.	TEM micrographs with EDX analysis of RhNPs@MMS	S10-S14
١.	XPS spectra of RhNPs@MMS	S15-S18
J.	Calculation specific surface area and metal Dispersion	S19
К.	Selected Catalytic Reactions	S20
L.	NMR spectra of catalytic products	S22
М.	Bibliography	S41

A. Infrared spectra

Figure S1. FTIR (ATR) spectra of functionalized SBA-15 based materials and Stöber silica.

Figure S2. FTIR (ATR) of RhNPs supported on functionalized SBA-15 and Stöber silica

Figure S3. FTIR (ATR) of RhNPs@SBA-15-Imz [NTf₂] before and after phenol reductive amination in 1750-1250 cm⁻¹region.

Figure S4. Far infrared spectra of RhNPs supported on functionalized SBA-15

Figure S5. TGA curve of functionalized SBA-15 and Stöber silica

Figure S6. TGA curve of RhNPs supported in functionalized SBA-15.

C. PXRD data

Figure S7. PXRD of RhNPs@SBA-15-Imz[NTf₂].

D. ²⁹ Si NMR deconvolution data

Table S1. Relative concentration of Tⁿ and Qⁿ sites obtained from ²⁹Si UDEFT spectra.

	²⁹ Si-UDEFT-MAS ^a				% of	% of Silanols	Grafting	BET	Surface			
Material	T1	T ²	T ³	Q²	Q³	Q⁴	φ ratio	silane Grafting ^₅	(Si- OH) ^b	(mmol g ⁻¹) ^c	area (m ² g ⁻¹)	(molecules nm ⁻²)
SBA-15-Imz [NTf ₂]	0.5	5.2	5.7	6.6	16.9	65.2	0.49	11.4	23.5	1.1	279	2.4
SBA-15-NIC	1.4	7.6	3.9	1.8	22.2	63.1	0.53	12.9	24.0	2.1	328	3.9
a) Percentage Area after deconvolution of ²⁹ Si NMR spectrum. b) Determined based on the relative concentrations of T ⁿ and Q ⁿ . c) Determined by												

E.A and TGA.

Figure S8. Solid ¹³C CP-MAS NMR spectrum of SBA-15-Imz[NTf₂] (A), and SBA-15-NIC (B)

Figure S9. Adsorption-desorption isotherms of functionalized SBA-15 with pore size.

Entry	Material	S _{BET} (m ² g ⁻¹) ^a	Pore width ^ь (nm)
1	SBA-15	902	5.7
2	SBA-15 Imz[NTf ₂]	279	5.4.
3	SBA-15 NIC	328	3.8
4	RhNPs@ SBA-15 Imz[NTf ₂]	211	5.4

Table S2 BET isotherms analysis of functionalized silicas.

^a Calculated using Brunauer–Emmett– Teller (BET) model on the adsorption branch in the range of relative pressure (P/Po) from 0.06 to 0.196.

^b Calculated using the BJH model for cylindrical pores

G. TEM and SEM micrographs with EDX analysis of pristine SBA-15

Figure S10. TEM micrographs of pristine calcinated SBA-15 where it showed a ca. 7.9 nm of pore dimeter and 3.6 nm of walls width.

Figure S11. SEM micrographs of pristine calcinated SBA-15 with particles size distribution (566 ±165) with EDX and element mapping.

H. TEM micrographs with EDX analysis of RhNPs@MMS

Element •	Line Type	k Factor	k Factor type	Absorption Correction	Wt%	Wt% Sigma	Atomic %
N	K series	3.515	Theoretical	1.00	0.00	0.00	0.00
0	K series	2.020	Theoretical	1.00	44.48	0.51	63.46
Si	K series	1.000	Theoretical	1.00	38.61	0.45	31.38
CI	K series	1.026	Theoretical	1.00	3.33	0.20	2.14
Rh	L series	1.814	Theoretical	1.00	13.58	0.60	3.01
Total					100.00		100.00

Figure S13. Element mapping and EDX quantification of RhNPs@SBA-15-Imz[NTf₂]

Figure S14. HAADF-STEM images of RhNPs@SBA-15NIC with FFT. Mean diameter: 1.7 ± 0.3 nm.

Element •	Line Type	k Factor	k Factor type	Absorption Correction	Wt%	Wt% Sigma	Atomic %
N	K series	3.515	Theoretical	1.00	0.00	0.00	0.00
0	K series	2.020	Theoretical	1.00	40.98	0.33	58.45
Si	K series	1.000	Theoretical	1.00	46.75	0.32	37.98
CI	K series	1.026	Theoretical	1.00	2.00	0.11	1.29
Rh	L series	1.814	Theoretical	1.00	10.27	0.36	2.28
Total					100.00		100.00

Figure S15. Element mapping and EDX quantification of RhNPs@SBA-15-NIC

Figure S16. STEM image of RhNPs in spent catalyst (A) with EDX elemental mapping (B) and FFT of RhNPs (C).

I. XPS spectra of RhNPs@MMS

Figure S17	. XPS survey	of RhNPs@SBA	-15Imz[NTf2]
------------	--------------	--------------	--------------

Name	Peak BE	Atomic %	Wt. %
O1s	532.95	40.07	31.8
Rh3d	307.93	2.24	11.4
F1s	689.03	8.26	7.8
Si2p	103.38	18.56	25.9
C1s	286.13	20.86	12.4
N1s	401.82	6.17	4.3
S2p	169.23	2.59	4.1
Cl2p	198.3	1.25	2.2

Table S3 Element distribution on surface of RhNPs@SBA-15Imz[NTf2] by XPS

Figure S18. High resolution -XPS of N 1s in RhNPs@SBA-15Imz[NTf2]

Table S4 Nitrogen species distribution on surface of RhNPs@SBA-15Imz[NTf2] by XPS

Name	Peak BE	Atomic %
N*-Rh	397.83	5.42
$N^{-}(NTf_2)$	399.09	36.65
N^{+} (Imz)	401.28	57.93

Name	Peak BE	Atomic %	Wt. %
Rh3d	308.14	14.99	53.78
O1s	531.81	36.12	20.15
C1s	285.2	36.18	15.15
Si2p	103.17	6.87	6.73
N1s	399.91	4.03	1.97
Cl2p	198.56	1.81	2.24

Table S5 Element distribution on surface of RhNPs@SBA-15NIC by XPS

Figure S20. High resolution -XPS of N 1s in RhNPs@SBA-15NIC

Name	Peak BE	Atomic %
N Pyridine	397.96	10.1
N amide	400.09	85.21
NH +	402.39	4.69

Table S6 Nitrogen species	distribution on surface	of RhNPs@SBA-15NIC by	y XPS
---------------------------	-------------------------	-----------------------	-------

J. Calculation of specific surface area and metal Dispersion.

For the calculation of the dispersion (D) of the RhNPs, we assume nanoparticles as spheres; let NS be the total number of metal atoms present on the surface and NT the total number of metal atoms (surface and bulk). The metal dispersion D is given by

D = NS/NT (eq. 1)

Taking in account the relationship between specific surface area (S_{sp}) and dispersion (D) is

 $S_{sp} = a_m (N_A/M)D (eq. 2)$

Where a_m is the surface area occupied by an atom (Rh) on a polycrystalline surface, N_A is Avogadro's number (6.022 × 10²³ mol⁻¹) and M is the atomic mass of the metal.

And the definition of v_m (the volume occupied by an atom (Rh) in the bulk of metal) given by:

 $v_m = M/\rho NA (eq. 3)$

where ρ the mass density

It possible to rewrite the D in terms of a_m , v_m and d_{NP} .^{1,2} and rewrites as follows:

 $D = [6(v_m/a_m)]/d_{NP}$ (eq. 4)

Where d_{Np} is the mean diameter of nanoparticles.

For Rh (FCC) $a_m = 7.58 \text{ Å}^2$, $v_m = 13.78 \text{ Å}^3$, $\rho = 12.4 \text{ g cm}^{-3}$,

D(RhNPs@SBA-15Imz[NTf₂]) = [6*(13.78 Å³/7.58 Å²)]/ **27** Å = **0.404 (40.4 %)**

S_{sp} (RhNPs@SBA-15Imz[NTf₂])= 7.58x10⁻²⁰m² (N_A/102.905)=443.6*D= 179 m²g⁻¹

D(RhNPs@SBA-15NIC)= [6*(13.78 Å³/7.58 Å²)]/ 17 Å = 0.642 (64.2 %)

S_{sp} (RhNPs@SBA-15Imz[NTf₂])= 7.58x10⁻²⁰m² (N_A/102.905 g mol⁻¹)=443.6*D= 285 m²g⁻¹

K. Selected catalytic Reactions.

Reaction conditions: 2 mmol of substrate, 5 mg RhNPs@SBA-15-NIC 0.25 mol% , 100 °C. Conversion % (Selectivity %)

Table S7. Rh-catalyzed hydrogenation of Levulinic Acid.

Entry	Catalyst	Solvent	Time (h)	H ₂ (bar)	Conv.% ^a	Yield 17a% ^a	TON ^b
1		5		5	<1	n.d.	n.d.
2	RhNPs@SBA-15-NIC	Dioxane	21		5	n.d.	n.d.
3		2-MeTHF	2h	40	5	n.d.	n.d.
4		Heptane		40	<1	n.d.	n.d.
5		Neat	4		15	12	96
6		Dioxane		5	<1	n.d.	n.d.
7				18	9	72	
8	RhNPs@SBA-15-Imz[NTf ₂]	2-MeTHF	2h	40	7	n.d.	n.d.
9		Heptane		40	<1	n.d.	n.d.
10		Neat	4		42	42	336

Reaction conditions: Levulinic acid (203 $\mu\text{L},$ 2 mmol), 2 mL of solvent, 5 mg of catalyst, 100 °C.

ОН

Reaction conditions: Furfural (166 $\mu\text{L},$ 2 mmol), 2 mL of solvent, 5 mg of catalyst, 100 °C.

 $\label{eq:schemess} \textbf{Scheme S1}. Recycling experiments of RhNPs@SBA-15-Imz[NTf_2] on cyclohexene hydrogenation.$

L. NMR Data of catalytic products

4-cyclohexylmorpholine: ³

¹H NMR (600 MHz, CDCl₃) δ 3.79 – 3.71 (m, 4H), 2.67 – 2.55 (m, 4H), 2.29 – 2.17 (m, 1H), 1.96 – 1.74 (m, 4H), 1.37 – 1.13 (m, 6H).¹³C NMR (151 MHz, CDCl₃) δ 66.90, 63.93, 49.44, 28.45, 26.09, 25.66.

Ethylbenzene:

¹H NMR (600 MHz, CDCl₃) δ: 7.35 – 7.25 (m, 3H, Ar-H), 7.26 – 7.15 (m, 1H, Ar-H), 2.67 (q, J = 7.6 Hz, 2H, -CH₂-), 1.26 (t, J = 7.6 Hz, 3H, -CH₃).

Pinane: 4

Mixture of Cis and Trans , ¹H NMR (600 MHz, CDCl₃) δ: 2.38 (q, *J* = 7.2 Hz, 2H), 2.20 (q, *J* = 8.1 Hz, 2H), 2.16 – 1.64 (m, 13H), 1.56 – 1.43 (m, 2H), 1.26 (d, *J* = 4.1 Hz, 9H), 1.08 (d, *J* = 12.0 Hz, 13H), 0.96 – 0.87 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ: 48.24, 47.79, 41.51, 41.03, 39.56, 38.90, 36.11, 35.57, 34.08, 29.48, 28.38, 26.91, 26.65, 24.72, 24.07, 23.97, 23.27, 23.14, 22.96, 21.65, 20.13.

5-propylbenzo[d][1,3]dioxole:

 $\int_{-1}^{1} 0^{-1} H NMR (600 \text{ MHz}, \text{ CDCl}_3) \delta: 6.83 - 6.69 \text{ (m, 2H)}, 6.69 - 6.61 \text{ (m, 1H)}, 5.93 \text{ (d, } J = 1.1 \text{ Hz}, 2\text{ H)}, 2.54 \text{ (t, } J = 7.7 \text{ Hz}, 2\text{ H)}, 1.67 - 1.60 \text{ (m, 2H)}, 0.97 \text{ (td, } J = 7.3, 2.6 \text{ Hz}, 3\text{ H)}. {}^{13}\text{C NMR} (151 \text{ MHz}, \text{CDCl}_3) \delta: 147.59, 145.57, 136.65, 121.21, 109.00, 108.10, 100.77, 37.90, 24.93, 13.80.}$

1-methoxy-4-propylbenzene:

¹H NMR (600 MHz, CDCl₃) δ: 7.18 – 7.10 (m, 2H), 6.94 – 6.84 (m, 2H), 3.83 (s, 4H), 2.63 – 2.54 (m, 2H), 1.67 (h, *J* = 7.4 Hz, 2H), 0.99 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ: 157.78, 134.91, 129.42, 113.75, 55.31, 37.27, 24.92, 13.89.

2-methoxy-4-propylphenol:

^O ¹H NMR (600 MHz, CDCl₃) δ: 6.96 (d, *J* = 7.9 Hz, 1H), 6.82 – 6.74 (m, 2H), 5.91 (s, 1H), 3.90 (s, 3H), 2.65 – 2.60 (m, 2H), 1.73 (h, *J* = 7.4 Hz, 2H), 1.05 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ: 146.38, 143.57, 134.58, 120.93, 114.23, 111.10, 55.70, 37.70, 24.82, 13.71.

2,6-dimethyloctane:

¹H NMR (600 MHz, CDCl₃) δ: 1.58 – 1.48 (m, 1H), 1.42 – 1.19 (m, 5H), 1.19 – 1.03 (m, 4H), 0.90 – 0.83 (m, 12H). ¹³C NMR (151 MHz, CDCl₃) δ: 39.57, 37.07, 34.62, 29.71, 28.17, 25.02, 22.88, 22.79, 19.39, 11.58.

Stearic acid: 5

¹H NMR (600 MHz, CDCl₃) δ: 11.69 (s, 1H), 2.34 (t, *J* = 7.6 Hz, 2H), 1.63 (p, *J* = 7.5 Hz, 2H), 1.26 (s, 26H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ: 180.62, 34.26, 32.09, 29.86, 29.85, 29.83, 29.80, 29.75, 29.59, 29.52, 29.40, 29.22, 24.83, 22.85, 14.26.

Squalane: 5

¹H NMR (600 MHz, CDCl₃) δ 1.65 – 1.51 (m, 3H), 1.52 – 1.24 (m, 25H), 1.25 – 1.06 (m, 12H), 0.99-0.82 (m, 24H). ¹³C NMR (151 MHz, CDCl₃) δ 39.73, 37.82, 37.79, 37.77, 37.75, 37.66, 33.13, 33.10, 28.30, 27.80, 27.79, 25.17, 25.16, 24.82, 23.04, 22.94, 20.09, 20.06, 20.02, 20.00.

Benzylamine:

¹ NH₂ ¹H NMR (600 MHz, , CDCl₃) δ: 7.31 – 7.17 (m, 5H), 3.77 (s, 2H), 1.39 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ: 143.07, 128.13, 126.70, 126.35, 46.10.

Aniline:

NH

 $^{\text{NH}_2 \text{ 1}}$ H NMR (600 MHz, CDCl₃) δ: 7.36 – 7.23 (m, 2H), 6.89 (t, *J* = 7.4 Hz, 1H), 6.82 – 6.68 (m, 2H), 3.68 (s, 2H). 13 C NMR (151 MHz, CDCl₃) δ: 146.42, 129.17, 118.31, 114.99.

Methylcyclohexane:6

¹H NMR (600 MHz, CDCl₃) δ: 1.78 – 1.57 (m, 6H), 1.41 – 1.30 (m, 1H), 1.30 – 1.19 (m, 2H), 1.20 – 1.08 (m, 1H), 0.88 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ: 35.66, 32.97, 26.67, 26.55, 23.05.

1,2,3,4-tetrahydroquinoline:7

 \dot{H} ¹H NMR (600 MHz, CDCl₃) δ: 7.01 – 6.95 (m, 2H), 6.68 – 6.59 (m, 1H), 6.53 – 6.45 (m, 1H), 3.35 – 3.26 (m, 3H), 2.79 (t, *J* = 6.4 Hz, 2H), 2.00 – 1.92 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ: 144.88, 129.61, 126.82, 121.56, 117.05, 114.30, 42.08, 27.07, 22.28.

Gamma-valerolactone:5

¹H NMR (600 MHz, CDCl₃) δ: 4.50 – 4.39 (m, 1H), 2.32 (dd, *J* = 10.2, 7.2 Hz, 2H), 2.23 – 2.10 (m, 1H), 1.69 – 1.58 (m, 1H), 1.20 – 1.16 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ: 176.89, 76.84, 29.19, 28.60, 20.53.

phenylmethanol ¹H NMR (600 MHz, CDCl₃) δ 7.51 – 7.29 (m, 5H), 4.59 (s, 2H), 4.18 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ : 140.79, 128.25, 127.23, 126.85, 64.44.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 13C Chemical Shift (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 13C Chemical Shift (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 13C Chemical Shift (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 13C Chemical Shift (ppm)

м. Bibliography

- (1) Bergeret, G.; Gallezot, P. Particle Size and Dispersion Measurements. In *Handbook of Heterogeneous Catalysis*; John Wiley & Sons, Ltd, 2008; pp 738–765. https://doi.org/10.1002/9783527610044.hetcat0038.
- (2) Serrano-Maldonado, A.; Bendounan, A.; Silly, M. G.; Pla, D.; Gómez, M. Selective Catalytic Hydrogenation of Fatty Acids with Cobalt–Halloysite Nanocomposites for Waste Valorization. *ACS Appl. Nano Mater.* **2023**, *6* (13), 11317–11326. https://doi.org/10.1021/acsanm.3c01361.
- (3) Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Fröhlich, R.; Erker, G. Metal-Free Catalytic Hydrogenation of Enamines, Imines, and Conjugated Phosphinoalkenylboranes. *Angewandte Chemie International Edition* 2008, 47 (39), 7543–7546. https://doi.org/10.1002/anie.200801432.
- (4) Espinal-Viguri, M.; Neale, S. E.; Coles, N. T.; Macgregor, S. A.; Webster, R. L. Room Temperature Iron-Catalyzed Transfer Hydrogenation and Regioselective Deuteration of Carbon–Carbon Double Bonds. J. Am. Chem. Soc. **2019**, 141 (1), 572–582. https://doi.org/10.1021/jacs.8b11553.
- (5) Pérez Alonso, A.; Mauriés, S.; Ledeuil, J.-B.; Madec, L.; Pham Minh, D.; Pla, D.; Gómez, M. Nickel Nanoparticles Immobilized on Pristine Halloysite: An Outstanding Catalyst for Hydrogenation Processes. *ChemCatChem* 2022, 14 (22), e202200775. https://doi.org/10.1002/cctc.202200775.
- (6) Udayakumar, V.; Pandurangan, A. A Novel Route for the Synthesis of Alkanes from Glycerol in a Two Step Process Using a Pd/SBA-15 Catalyst. *RSC Adv.* **2015**, *5* (96), 78719–78727. https://doi.org/10.1039/C5RA10744J.
- (7) Pulido-Díaz, I. T.; Serrano-Maldonado, A.; López-Suárez, C. C.; Méndez-Ocampo, P. A.; Portales-Martínez, B.; Gutiérrez-Alejandre, A.; Salas-Martin, K. P.; Guerrero-Ríos, I. RhNPs Supported on N -Functionalized Mesoporous Silica: Effect on Catalyst Stabilization and Catalytic Activity. *Dalton Trans.* 2021, 50 (9), 3289–3298. https://doi.org/10.1039/D0DT04213G.