Supporting Information

Construction of Z-scheme heterojunction interfacial charge transfer pathways in ZnIn₂S₄@NENU-5 for photocatalytic hydrogen

evolution

Xu Kong^{1,2,3}, Kai Wang^{1,2,3}*, Hai Yu^{1,2,3}, Zhiliang Jin^{1,2,3}

 School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R.China
 Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P.R.China
 Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R.China

*Corresponding author: <u>kaiwang@nun.edu.cn</u> (K. Wang)

AQE measurement:

The apparent quantum efficiency (AQE) for the photocatalytic hydrogen evolution from the sample was measured under the irradiation of 300 W Xe lamps at various monochromatic wavelengths (450 nm, 475 nm, 500 nm, 520 nm, and 550 nm), the AQE was then calculated using the following equation:

 $AQE = \frac{2 \times \text{the number of evolved hydrogen molecules}}{\text{the number of incident photons}} \times 100\%$

Fig. S1. Parameters of the lattice within the area of Fig. 2f

Fig. S2. band structures of NENU-5 NOs and ZnIn₂S₄ NFs.

Fig. S3. H_2 evolution of the ZnIn₂S₄@10%NENU-5 in different sacrificial reagents.

Fig. S4. Apparent quantum efficiency (AQE) of the $ZnIn_2S_4@10\%NENU$ -5.

Fig. S5. TEM images of ZnIn₂S₄@NENU-5 heterostructures after photocatalytic reaction.

Table S1. Parameters of physical adsorption

Samples	$S_{BET} \left(m^2 g^{-1}\right)$	Pore volume (cm ³ g ⁻¹)	Average pore size (nm)	
NENU-5 NOs	547.02	0.22	6.13	
ZnIn ₂ S ₄ NFs	65.29	0.23	12.29	
ZIS@10%NENU-5	101.39	0.34	11.96	

Table S2. Comparison of photocatalytic hydrogen evolution rate of $ZnIn_2S_4$ based photocatalysts.

Dh ata aata kyata	Light	Sacrificia	AQE (%)	Activity	Ref.	
Photocatarysts	sources	l reagent	@wavelength	$(\mu mol \cdot g^{-1} h^{-1})$		
ZnIn ₂ S ₄ @NENU-5	5 W LED	TEOA	500 nm 3.64%	5282.14	This work	
ZnIn ₂ S ₄ /MoS ₂	150 W Xa lamp	Na ₂ S/Na ₂	532 nm 0.19%	200.1	[S1]	
Faln S. @7nIn S.	300 W	Na ₂ S/Na ₂	420 nm 2 60%	4210	[82]	
$\operatorname{rem}_2 \mathfrak{S}_4 (\mathcal{U} \mathcal{L} \operatorname{mm}_2 \mathfrak{S}_4)$	Xe lamp	SO ₃ 420 nm 5.09%		4210	[32]	
NiTiO ₃ /ZnIn ₂ S ₄	3X 30W LED	TEOA	450 nm 4.39%	4430	[S3]	
MIL-68(In)@ZnIn ₂ S ₄	300 W Xe lamp	TEOA	400 nm 0.70%	9090	[S4]	
MoO ₂ /C@ZnIn ₂ S ₄	300 W Xe lamp	TEOA	400 nm 2.96%	2357	[85]	
$Ti_3C_2/ZnIn_2S_4/CdS$	300 W Xe lamp	TEOA	450 nm 3.42%	8930	[S6]	
BP@ZnIn ₂ S ₄	300 W Xe lamp	Na ₂ S/Na ₂ SO ₂	450 nm 0.25%	1278	[S7]	
Ni _{1 x} Co _x Se ₂ -C	300 W	203		5099	[S8]	
$/ZnIn_2S_4$	Xe lamp	TEOA	420 nm 2.32%			
ZnIn ₂ S ₄ @NH ₂ -MIL-	300 W	Na ₂ S/Na ₂			5001	
125(Ti)	Xe lamp	SO ₃	420 nm 4.30%	2204	[89]	

Sample	$\tau_1[ns]$	$\tau_2[ns]$	τ_3 [ns]	$\tau_{ave}[ns]$
NENU-5 NOs	2.117 (11.80%)	0.048 (83.74%)	11.754(4.45%)	0.057
ZnIn ₂ S ₄ NFs	2.204(10.50%)	13.137 (3.89%)	0.056(85.61%)	0.065
ZIS@10%NENU-5	2.222(11.59%)	0.083 (83.95%)	12.849(4.46%)	0.098

 Table S3. Attenuation parameters of all samples.

References

[S1] W. Pudkon, H. Bahruji, P. J. Miedziak, T. E. Davies, D. J. Morgan, S. Pattisson, S. Kaowphong and G. J. Hutchings, Enhanced visible-light-driven photocatalytic H₂ production and Cr(VI) reduction of a ZnIn₂S₄/MoS₂ heterojunction synthesized by the biomolecule-assisted microwave heating method, *Catal. Sci. Technol.*, 2020, **10**, 2838-2854.

[S2] Fan Q, Yan Z, Li J, et al. Interfacial-electric-field guiding design of a Type-I FeIn₂S₄@ZnIn₂S₄ heterojunction with ohmic-like charge transfer mechanism for highly efficient solar H₂ evolution, *Appl. Surf. Sci.*, 2024, **663**, 160206.

[S3] S. Dhingra, M. Sharma, V. Krishnan and C. Nagaraja, Design of noble metal-free NiTiO₃/ZnIn₂S₄ heterojunction photocatalyst for efficient visible-light-assisted production of H₂ and selective synthesis of 2, 5-Bis (hydroxymethyl) furan, *J. Colloid Interface Sci.*, 2022, **615**, 346-356.

[S4] M. Tan, C. Yu, H. Zeng, C. Liu, W. Dong, H. Meng, Y. Sua, L. Qiaoa, L. Gaoa, Q. Luc and Y. Bai, In situ fabrication of MIL-68(In)@ZnIn₂S₄ heterojunction for enhanced photocatalytic hydrogen production, *Nanoscale*, 2023, **15**, 2425-2434.

[S5] X. Zhang, H. Ye, Z. Zeng, K. Sa, J. Jia, Z. Yang and S. Xu, Chuang Han, Yujun Liang, Bridging the gap between metallic MoO₂ and ZnIn₂S₄ for enhanced photocatalytic H₂ production, *Sep. Purif. Technol.*, 2024, **347**, 127624.

[S6] J. Bai, W. Chen, R. Shen, Z. Jiang, P. Zhang, W. Liu and X. Li, Regulating interfacial morphology and charge-carrier utilization of Ti_3C_2 modified all-sulfide CdS/ZnIn₂S₄ S-scheme heterojunctions for effective photocatalytic H₂ evolution, *J. Mater. Sci. Technol.*, 2022, **112**, 85-95.

[S7] Q. Zhanga, J. Zhanga, L. Zhanga, M. Caoa, F. Yanga and W. L. Dai, Facile construction of flower-like black phosphorus nanosheet@ $ZnIn_2S_4$ composite with highly efficient catalytic performance in hydrogen production, *Appl. Surf. Sci.*, 2020, **504**, 144366.

[S8] Y. Chao, P. Zhou, J. Lai, W. Zhang, H. Yang, S. Lu, H. Chen, K. Yin, M. Li, Lu
 Tao, C. Shang, M. Tong and S. Guo, Ni_{1-x}Co_xSe₂-C/ZnIn₂S₄ Hybrid Nanocages with
 Strong 2D/2D Hetero-Interface Interaction Enable Efficient H₂-Releasing

Photocatalysis, Adv. Funct. Mater., 2021, 31, 2100923.

[S9] H. Liu, J. Zhang and D. Ao, Construction of heterostructured $ZnIn_2S_4@NH_2$ -MIL-125 (Ti) nanocomposites for visible-light-driven H₂ production, *Appl. Catal. B Environ*. *Energy*, 2018, **221**, 433-442.