Ditopic ligand effects on stabilization of copper sulfide nanoclusters: control of solutionphase equilibria and redox chemistry in discrete $\left[\mathrm{Cu}_{12} \mathrm{~S}_{6}\right.$] clusters with labile $\mathrm{Cu}-\mathrm{S}$ bonds

Michael J. Trenerry and Gwendolyn A. Bailey
Department of Chemistry, University of Minnesota - Twin Cities
207 Pleasant St SE, Minneapolis, MN 55455, USA

Supporting Information

Experimental Details S3
General Considerations S3
Synthetic Protocols S3Synthesis of $1 \cdot$ dppoSynthesis of $\mathbf{1} \cdot \mathbf{d p p t}$Synthesis of $\mathbf{1} \cdot \mathbf{P P h}_{2} \mathbf{E t}$Synthesis of $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}^{2}\right]\left[\mathrm{PF}_{6}\right]$Independent synthesis of dppoS ${ }_{2}$
MALDI-MS Characterization S4

Figure S1: Positive ion mode mass spectrum of $\mathbf{1} \cdot \mathbf{d p p o}$
Figure S2: Recorded and simulated positive ion mode mass spectra of $\mathbf{1} \cdot \mathbf{d p p o}$
Figure S3: Positive ion mode mass spectrum of $\mathbf{1} \cdot \mathbf{d p p t}$
Figure S4: Recorded and simulated positive ion mode mass spectra of $\mathbf{1} \cdot \mathbf{d p p t}$
Figure S5: Positive ion mode mass spectra of $\mathbf{1} \cdot \mathbf{d p p o}$ and $\mathbf{1} \bullet \mathbf{d p p t}$ at varied laser power levels
Figure S6: Negative ion mode mass spectrum of $1 \cdot d p p o$
Figure S7: Recorded and simulated negative ion mode mass spectra of $\mathbf{1} \cdot \mathbf{d p p o}$
Figure S8: Negative ion mode mass spectrum of $1 \cdot d p p t$
Figure S9: Recorded and simulated negative ion mode mass spectra of $\mathbf{1} \cdot \mathbf{d p p t}$
Interpretation of ${ }^{l} H$ DOSY NMR
Equation S1: Stokes-Einstein equation
Equation S2: Approximation of molecular radius from crystallographic data
Table S1: Calculated values of $\mathrm{r}_{\text {XRD }}$ for clusters 1.
Extended Solution Stability Studies
Figure S10: ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{1} \cdot \mathrm{d}$ ppo in THF-d ${ }_{8}$ over 21 days.
Figure S11: ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $1 \cdot d p p o$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ over 21 days.
Figure S12: ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $1 \cdot{ }^{\bullet}$ dppo in toluene- d_{8} over 21 days.
Figure S13: ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $1 \cdot d$ ppo in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ over 21 days.
Figure S14: Concentration of $\mathbf{1 \bullet d p p o}$ in solution over 21 days.
Electrochemical Characterization
Equation S3: Randles-Ševčík equation
Table S2: Randles-Ševčík analysis of $[\mathbf{1} \cdot \mathbf{d p p o}]^{0 /+}$
Figure S15: (a) Cyclic voltammograms of $1 \cdot \mathbf{d p p o}\left(1 \mathrm{mM} 1 \cdot d p p o ; 100 \mathrm{mM}\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]\right.$ in THF)
collected at scan rates of $10-500 \mathrm{mV} / \mathrm{s}$. (b) Anodic ($i_{p a}$) and cathodic ($i_{p c}$) peak currents, plotted versus the square root of scan rate.
Figure S16: Cyclic voltammograms collected for 1•dppo (1 mM 1•dppo and 100 mM $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ in THF; $20 \mathrm{mV} / \mathrm{s}$) with varied scan windows.
Figure S17. (Top) Cyclic voltammetry and (Bottom) differential pulse voltammetry measurements of $1 \cdot d p p t\left(<1 \mathrm{mM}\right.$ 1•dppt and $100 \mathrm{mM}\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ in THF; $100 \mathrm{mV} / \mathrm{s}$) collected over a range of anodic vertex potentials.

Figure S18. (Top) Cyclic voltammetry and (Bottom) differential pulse voltammetry measurements of $\mathbf{1} \cdot \mathbf{P P h}_{2} \mathbf{E t}\left(1 \mathrm{mM} 1 \cdot \mathbf{P P h}_{2} \mathbf{E t}\right.$ and $100 \mathrm{mM}\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ in THF; $100 \mathrm{mV} / \mathrm{s}$) collected over a range of anodic vertex potentials.

Oxidative reactivity studies

Figure S19: Redox titrations of $1 \cdot$ dppo and $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}^{2}\right]\left[\mathrm{PF}_{6}\right]:{ }^{1} \mathrm{H}$ NMR analysis conducted in THF$\mathrm{d}_{8} / \mathrm{CD}_{3} \mathrm{CN}$ for reactions in which $0.0 / 0.5 / 1.0 / 1.5 / 2.0 / 2.5 / 3.0$ equiv [$\left.\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]$ together with independently synthesized dppoS . $_{\text {. }}$
Figure S20: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra for $\mathbf{1} \bullet$ dppo reacted with $0.0 / 0.5 / 1.0 / 1.5 / 2.0 / 2.5 / 3.0$ equivalents of $\left[\mathrm{Cp}_{2}{ }_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]$ and independently synthesized dppoS ${ }_{2}$.
Figure S21: Stacked ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{1} \bullet$ dppo prepared under a nitrogen atmosphere and the same sample after exposure to air for one week.
Figure S22: ${ }^{1} \mathrm{H}$ DOSY NMR spectrum of 1•dppo after exposure to air for one week.
Powder X-ray Diffraction (PXRD) Analysis S28
Figure S23: Powder X-ray diffraction patterns collected for $\mathbf{1} \cdot \mathbf{d p p o}$, air-exposed $\mathbf{1} \cdot \mathbf{d p p o}$, and chemically oxidized $\mathbf{1} \cdot \mathbf{d p p o .}$
Analysis of crystallographic metrics for clusters 1 S30
Figure S24: Classification of $\mathrm{Cu}-\mathrm{S}$ bonds in $\mathrm{Cu}_{12} \mathrm{~S}_{6}$ clusters 1.
Table S3: Crystallographic $\mathrm{Cu}-\mathrm{S}$ bond distances (\AA) reported for clusters 1
Table S4: Crystallographic $\mathrm{Ph} o-\mathrm{CH}---\mathrm{S}$ distances and angles reported for clusters 1
NMR Spectra
Figure S25: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1} \cdot \mathbf{P P h}_{2} \mathbf{E t}$
Figure S26: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1} \cdot \mathbf{P P h}_{2} \mathbf{E t}$
Figure S27: ${ }^{1} \mathrm{H}$ NMR spectrum of free $\mathrm{PPh}_{2} \mathrm{Et}$ ligand
Figure S28: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of free PPh_{2} Et ligand
Figure S29: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1} \cdot \mathbf{d p p t}$
Figure S30: ${ }^{1} \mathrm{H}$ DOSY NMR spectrum of $\mathbf{1} \cdot \mathbf{d p p t}$
Figure S31: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $1 \cdot d p p t$
Figure S32: ${ }^{1} \mathrm{H}$ NMR spectrum of free dppt ligand
Figure S33: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of free dppt ligand
Figure S34: ${ }^{1} \mathrm{H}$ NMR spectrum of 1•dppo
Figure S35: ${ }^{1} \mathrm{H}{ }^{1} \mathrm{H}$ COSY NMR spectrum of $1 \cdot d p p o$
Figure S36: ${ }^{1} \mathrm{H}{ }^{1} \mathrm{H}$ NOESY NMR spectrum of $1 \bullet$ dppo
Figure S37: ${ }^{1} \mathrm{H}{ }^{13} \mathrm{C}$ HSQC NMR spectrum of $1 \cdot d \boldsymbol{d p p o}$
Figure S38: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $1 \cdot d p p o$
Figure S39: ${ }^{1} \mathrm{H}$ NMR spectrum of free dppo ligand
Figure S40: ${ }^{1} \mathrm{H}$ NMR spectrum of dppoS ${ }_{2}$
Figure S41: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of dppoS_{2}

Computational Details

Figure S42: DFT-predicted structure of truncated model complex $\mathbf{1}^{\prime} \cdot \mathbf{P P h}_{\mathbf{2}} \mathbf{E t}$ versus the reported crystallographic structure of $1 \cdot d p p o$.
Table S5: DFT-predicted bond lengths of $\mathbf{1} \cdot \bullet \mathbf{P P h}_{2} \mathbf{E t}$ and crystallographic bond lengths of $\mathbf{1} \bullet \mathbf{d p p o}$ Table S6: DFT-predicted bond lengths of $\left[1, \cdot \mathbf{P P h}_{2} \mathbf{E t}\right]^{\mathbf{0 / + / 2 +}}$
Cartesian coordinates of DFT-optimized structures
Calculated structure: $\mathbf{1} \cdot \cdot \mathbf{P P h}_{2} \mathbf{E t}$
Calculated structure: $\left[\mathbf{1}{ }^{\prime} \cdot \mathbf{P P h}_{2} \mathbf{E t}\right]^{+}$
Calculated structure: $\left[\mathbf{1} \cdot \mathbf{P P P}_{2} \mathbf{E t}\right]^{\mathbf{2 +}}$

EXPERIMENTAL DETAILS

General considerations

Unless otherwise specified, all synthetic procedures and electrochemical measurements were performed in an MBraun glovebox under an N_{2} atmosphere. Organic solvents were dried over alumina columns within a solvent purification system (Pure Process Technology) and degassed by sparging with Ar. Solvents, once dried and degassed, were stored in the glovebox over $3 \AA$ molecular sieves. NMR solvents (THF- $\mathrm{d}_{8}, \mathrm{C}_{6} \mathrm{D}_{6}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) were purchased from Cambridge Isotopes, degassed via at least 3 consecutive freeze/pump/thaw cycles, and dried over freshly activated $3 \AA$ molecular sieves. Crystalline samples of $\mathbf{1} \cdot \mathbf{P P h}_{2} \mathbf{E t}$ and $\mathbf{1} \bullet \mathbf{d p p t}$ were synthesized according to literature procedure. ${ }^{1,2}$ Phase purity was confirmed by comparison of the powder X-ray diffraction (PXRD) patterns with simulated and experimental values. ${ }^{1,2}$
$\mathrm{Cu}(\mathrm{OAc}), \mathrm{S}\left(\mathrm{SiMe}_{3}\right)_{2}$, and the phosphine ligands ethyldiphenylphosphine, 1,5-bis(diphenylphosphino)pentane, and 1,8-bis(diphenylphosphino)octane were purchased from commercial sources: $[\mathrm{Cu}(\mathrm{OAc})$ (Strem), $\mathrm{S}\left(\mathrm{SiMe}_{3}\right)_{2}$ (TCI), 1,8-bis(diphenylphosphino)octane (Sigma Aldrich), 1,5-bis(diphenylphosphino)pentane (Sigma Aldrich), ethyldiphenylphosphine (Sigma Aldrich)]and used as received. All NMR spectra were recorded on a Bruker Avance III HD 400 MHz spectrometer. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are referenced to residual solvent peaks. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were referenced to an external standard of 85% phosphoric acid. Multiplicities are abbreviated as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. PXRD patterns were collected on a Rigaku Smartlab SE diffractometer.

Synthetic Protocols

Synthesis of 1•dppo. 1•dppo was prepared according to a modified version of the previously reported literature protocol, ${ }^{1}$ using THF instead of toluene solvent for improved solubility of reagents. Additionally, the crystalline product was isolated from excess dppo ligand through vapor diffusion with pentane. In the glovebox, a 20 mL vial was charged with solid $\mathrm{Cu}(\mathrm{OAc})(126.8 \mathrm{mg}, 1.03 \mathrm{mmol}$), dppo ($328.1 \mathrm{mg}, 0.68$ mmol, 0.7 equiv), and THF (12 mL). The resulting light tan suspension was filtered through a celite plug into a separate vial, yielding a clear, colorless solution. After chilling the solution to $-40^{\circ} \mathrm{C}, \mathrm{S}\left(\mathrm{SiMe}_{3}\right)_{2}$ ($110 \mu \mathrm{~L}, 0.52 \mathrm{mmol}, 0.5$ equiv) was added dropwise with vigorous stirring, resulting in a color change to yellow-orange and then deep red within one minute. The solution was stirred at $-40^{\circ} \mathrm{C}$ for 30 min and then was evenly distributed between three vials. These vials were left uncapped and were placed inside a jar containing pentane antesolvent. The jar was then sealed and placed inside a freezer $\left(-25^{\circ} \mathrm{C}\right)$ to crystallize. After 24 h , filtration through a coarse porosity frit followed by washing with pentane and drying in vacuo yielded bright pink-red crystals of $\mathbf{1}$ •dppo ($145 \mathrm{mg}, 53.7 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (THF-d ${ }_{8}, 400 \mathrm{MHz}, 25$ ${ }^{\circ} \mathrm{C}$): $\delta 8.43$ (br s, 16 H), $7.31(\mathrm{t}, 8 \mathrm{H}), 7.15(\mathrm{t}, 16 \mathrm{H}), 7.02(\mathrm{br} \mathrm{s}, 16 \mathrm{H}), 6.93(\mathrm{t}, 8 \mathrm{H}), 6.85(\mathrm{t}, 16 \mathrm{H}), 2.68(\mathrm{dd}$, 8 H), 1.47 (br s, 16H), 0.99 (br dm, 16), 0.70 (br dm, 16), 0.11 (br s, 8). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d $8,162 \mathrm{MHz}$, $25^{\circ} \mathrm{C}$): $\delta-23.0(\mathrm{br} \mathrm{s}) .{ }^{1} \mathrm{H}$ DOSY NMR (THF-d $\mathrm{d}_{8}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}$) D $=5.1 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; \mathrm{r}_{\mathrm{H}}=9.4 \AA$.

The collected powder X-ray diffraction (PXRD) pattern of $\mathbf{1}$ •dppo closely matched the simulated and experimental pattern of the literature report. ${ }^{1}$

Synthesis of $\mathbf{1 \bullet} \boldsymbol{d p p t}$. Crystalline samples of $\mathbf{1 \bullet d p p t}$ were synthesized according to the literature procedure. ${ }^{1}$
${ }^{1} \mathrm{H}$ NMR (THF- $\mathrm{d}_{8}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}$): $\delta 7.39$ (br s), 7.26 (br s), 2.02 (br s), 1.61 (br s), 1.40 (br s). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d $8,162 \mathrm{MHz}, 25^{\circ} \mathrm{C}$): $\delta-16.2$ (br s). ${ }^{1} \mathrm{H}$ DOSY NMR (THF- $\mathrm{d}_{8}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}$) $\mathrm{D}=6.8 \times 10^{-}$ ${ }^{10} \mathrm{~m}^{2} / \mathrm{s} ; \mathrm{r}_{\mathrm{H}}=7.0 \AA$.

The collected powder X-ray diffraction (PXRD) pattern of $\mathbf{1} \boldsymbol{\bullet} \mathbf{d p p t}$ closely matched the reported simulated and experimental patterns. ${ }^{1}$

Synthesis of $\mathbf{1} \cdot \mathbf{P P h}_{2} \mathbf{E t}$. Crystalline samples of $\mathbf{1} \bullet \mathbf{P P h}_{2} \mathbf{E t}$ were synthesized according to the literature procedure. ${ }^{2}$
${ }^{1} \mathrm{H}$ NMR (THF- $\mathrm{d}_{8}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}$): $\delta 7.46$ (br s), 7.20 (br s), 2.03 (q), 0.98 (p). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF- d_{8}, $162 \mathrm{MHz}, 25^{\circ} \mathrm{C}$): $\delta-11.9(\mathrm{br} \mathrm{s}) .{ }^{1} \mathrm{H}$ DOSY NMR (THF- $\mathrm{d}_{8}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}$) D $=11.0 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} ; \mathrm{r}_{\mathrm{H}}=$ 4.3 Å.

The collected powder X-ray diffraction (PXRD) pattern of $\mathbf{1} \cdot \mathbf{P P h}_{2} \mathbf{E t}$ closely matched the reported simulated and experimental patterns. ${ }^{2}$

Synthesis of $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]$. $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]$ was synthesized according to an adapted literature procedure for the synthesis of the corresponding ferrocenium salt, $\left[\mathrm{Cp}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right] .{ }^{4}$ The procedure was performed on the bench using standard benchtop solvents, including HPLC-grade deionized water which was used throughout. On the bench, a 20 mL vial was charged with solid yellow $\mathrm{Cp} *{ }_{2} \mathrm{Fe}(660.0 \mathrm{mg}, 2.02 \mathrm{mmol}$) and a stir bar. To this vial was added concentrated sulfuric acid $(2.5 \mathrm{~mL})$ with magnetic stirring, resulting in the formation of a deep green mixture. This mixture was stirred for 45 min at RT and then added to a 100 mL round bottom flask containing a solution of ${ }^{\mathrm{t}} \mathrm{BuOH}(1.254 \mathrm{~g})$ in deionized water $(43 \mathrm{~mL})$. The combined mixture was stirred for 30 min and then filtered through a medium porosity frit to obtain a translucent green filtrate. The filtrate was chilled to $0^{\circ} \mathrm{C}$ (ice/water bath) and was then added to a 250 mL round bottom flask containing a solution of $\mathrm{KPF}_{6}(1.048 \mathrm{~g}, 5.69 \mathrm{mmol}, 2.81$ equiv) in pre-chilled deionized water ($60 \mathrm{~mL} ; 0$ ${ }^{\circ} \mathrm{C}$). The resulting mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ during which time a fluffy green precipitate formed. The precipitate was filtered through a fine-porosity frit, washed with chilled water ($2 \times 30 \mathrm{~mL}$) and chilled diethyl ether ($3 \times 20 \mathrm{~mL}$) and then dried in vacuo yielding [$\left.\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right.$] as a dark green solid (0.7410 g , 78.6% yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right.$): silent. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right): ~ m / z$ calcd for $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}\right]^{+} 326.3$, found 326.3.

Independent synthesis of $\mathbf{d p p o s} \mathbf{S}_{2}$. In an N_{2}-filled glovebox, a 20 mL vial was charged with dppo (105.3 $\mathrm{mg}, 0.22 \mathrm{mmol}$) and toluene (8 mL). Elemental sulfur ($160.4 \mathrm{mg}, 0.63 \mathrm{mmol}, 11.5$ equivalents) was gradually added over the course of 5 minutes, after which the reaction mixture was allowed to stir at room temperature for 16 hours. The reaction mixture was then filtered to remove residual sulfur and solvent was removed in vacuo yielding dppoS_{2} as a white solid. ($74.9 \mathrm{mg}, 62.7 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (THF- $\mathrm{d}_{8}, 400$ $\mathrm{MHz}, 25^{\circ} \mathrm{C}$): $\delta 7.91(\mathrm{~m} 8 \mathrm{H}), 7.43(\mathrm{~m}, 12 \mathrm{H}), 2.45(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF-d ${ }_{8}, 162 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}$): $\delta 41.6$ (s).

MALDI-MS Characterization of Cluster Compounds

Matrix and analyte solutions for matrix-assisted laser desorption/ionization mass spectrometry (MALDIMS) were prepared in a nitrogen-filled glovebox at concentrations of ca. 200 and 0.35 mM , respectively. Cocrystallized samples were prepared by successively spotting ca. 5-10 $\mu \mathrm{L}$ aliquots of matrix and analyte solutions on the MALDI target plate and allowing it to dry, yielding cocrystallized matrix and analyte. Data collection was performed in both positive and negative ion modes using a Bruker Autoflex Max MALDI/TOF-MS instrument with recorded masses calibrated to a known mixture of peptide calibrants. Positive ion mode mass spectra for $\mathbf{1} \bullet \mathbf{d p p o}$ and $\mathbf{1} \cdot \mathbf{d p p t}$ (Figures S1-S5) depict prominent signals for monocationic species containing intact or dimerized $\left[\mathrm{Cu}_{12} \mathrm{~S}_{6}\right]$ clusters from which one or more phosphine ligands have dissociated. No such signals were observed in the mass spectra collected for samples of $\mathbf{1} \cdot \mathbf{P P h}_{2} \mathbf{E t}$ prepared in the same manner, consistent with cluster degradation. By contrast, negative ion mode mass spectra for $\mathbf{1}$ •dppo and $\mathbf{1} \cdot \mathbf{d p p t}$ (Figures S6-S9) depict prominent signals for the monoanionic cluster
core $\left[\mathrm{Cu}_{12} \mathrm{~S}_{6}\right]^{-}$as well as the monoanionic aggregates $\left[\mathrm{Cu}_{24} \mathrm{~S}_{12}\right]^{-},\left[\mathrm{Cu}_{36} \mathrm{~S}_{18}\right]^{-}$, and $\left[\mathrm{Cu}_{48} \mathrm{~S}_{24}\right]^{-}$bearing no supporting phosphine ligands. Interestingly, the negative ion mode mass spectrum of $1 \cdot \mathbf{d p p t}$ additionally shows prominent signals corresponding to the monoanionic, ligand-free clusters [$\left.\mathrm{Cu}_{20} \mathrm{~S}_{10}\right]^{-}$and $\left[\mathrm{Cu}_{38} \mathrm{~S}_{19}\right]^{-}$.

Figure S1: Positive ion mode mass spectrum of $1 \bullet$ dppo, collected by MALDI-MS using an anthracene matrix.

Figure S2: Positive ion mode mass spectra of 1•dppo, collected by MALDI-MS using an anthracene matrix, and simulated mass spectral data for prominent signals.

Figure S3: Positive ion mode mass spectrum of $\mathbf{1} \cdot \mathbf{d p p t}$, collected by MALDI-MS using an anthracene matrix.

Figure S4: Positive ion mode mass spectra of $\mathbf{1}$ •dppt, collected by MALDI-MS using an anthracene matrix, and simulated mass spectral data for prominent signals.

Figure S5: Positive ion mode mass spectra of $\mathbf{1} \cdot \mathbf{d p p o}$ (left) and $\mathbf{1} \bullet \mathbf{d p p t}($ right $)$, collected by MALDI-MS using an anthracene matrix at laser power levels ranging from 20% to 50%.

Figure S6: Negative ion mode mass spectrum of $\mathbf{1 \bullet}$ dppo, collected by MALDI-MS using an anthracene matrix.

Figure S7: Negative ion mode mass spectra of $1 \cdot$ dppo, collected by MALDI-MS using an anthracene matrix, and simulated mass spectral data for prominent signals.

Figure S8: Negative ion mode mass spectrum of $\mathbf{1 \bullet} \boldsymbol{d p p t}$, collected by MALDI-MS using an anthracene matrix.

Figure S9: Negative ion mode mass spectra of $1 \bullet$ dppt, collected by MALDI-MS using an anthracene matrix, and simulated mass spectral data for prominent signals.

Interpretation of ${ }^{1}$ H DOSY NMR

The hydrodynamic radii r_{H} of solvated species were calculated from measured diffusion coefficients D according to the Stokes-Einstein equation (equation S 1), where k_{B} is the Boltzmann constant $\left(1.38 \times 10^{-23}\right.$ $\mathrm{J} \mathrm{K}^{-1}$), T is temperature (measured at 298.15 K), and η is the viscosity of solvent (for tetrahydrofuran, $\eta=$ 0.46 cP at $298.15 \mathrm{~K} .{ }^{5}$ As part of this analysis, dissolved analyte molecules are assumed to be roughly spherical.

Eq. S1

$$
D=\frac{k_{B} T}{6 \pi \eta r_{H}}
$$

The expected molecular radii of intact nanocluster species are estimated from reported single-crystal Xray diffraction data, where $\mathrm{r}_{\text {XRD }}$ is calculated according to equation S2 based on the method described by Macchioni and coworkers. ${ }^{6}$

Eq. S2

$$
r_{X R D}=\sqrt[3]{\frac{3 V}{4 \pi Z}}
$$

The volume of the crystallographic unit cell V is divided by the number of nanocluster molecules Z contained therein, which are treated as space-filling spherical objects. Due to the implicit simplifying assumption of perfect packing efficiency within the crystallographic unit cell, $\mathrm{r}_{\text {XRD }}$ is effectively an upperbound for the hydrodynamic radius r_{H} of an intact nanocluster.

Calculated values of $\mathrm{r}_{\text {XRD }}$ for the nanocluster species considered by this manuscript are presented in Table S1. These values are calculated for unit cell volumes V as reported, and after subtracting the molecular volume of solvent molecules ${ }^{7}$ within the unit cell.

Table S1: Calculated values of $\mathrm{r}_{\text {XRD }}$ for clusters 1.

Cluster	Z	Solvent in reported unit cell	$V\left(\AA^{3}\right)$	$r_{\text {XRD }}(\AA)$
$\mathbf{1} \cdot \mathbf{P P h}_{2} \mathbf{E t}^{8}$	1	None	2852	8.80
$\mathbf{1} \cdot \mathbf{d p p t}^{1}$	4	$2\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$	$13137(12933)^{\mathrm{a}}$	$9.22(9.17)^{\mathrm{b}}$
$\mathbf{1} \mathbf{d p p o}^{1}$	2	$3.5\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$	$7322(6966)^{\mathrm{a}}$	$9.56(9.40)^{\mathrm{b}}$

${ }^{a}$ Values in parentheses show the unit cell volume with the total molecular volume of solvent molecules subtracted. ${ }^{\mathrm{b}}$ Values in parentheses show estimated $\mathrm{r}_{\text {XRD }}$ using unit cell volumes excluding the molecular volumes of solvent molecules.

Extended Solution Stability Studies

The extended solution stability of $\mathbf{1} \bullet$ dppo was tested in tetrahydrofuran (THF)- d_{8}, toluene- d_{8}, benzene- d_{6} $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$, and dichloromethane- $\mathrm{d}_{2}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ over 21 days. Solutions were prepared inside a rigorously airand water-free N_{2}-filled glovebox by dissolving 1•dppo in the deuterated solvent of choice together with and 1,3,5-trimethoxybenzene (TMB) internal standard ([1•dppo]: ca. $0.6-1.2 \mathrm{mM}$, according to solubility; ca. 1:2 molar ratio vs. TMB). Samples were kept stirring within the glovebox for the duration of this experiment and sampled ($\sim 0.4 \mathrm{~mL}$ aliquots) for NMR analysis at various timepoints: immediately after sample preparation, and $1 / 2 / 4 / 21$ days after sample preparation.

The raw ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are presented in Figures S10-S13 while relative concentrations over time are plotted in Figure S14. In THF- d_{8} and $\mathrm{C}_{6} \mathrm{D}_{6}$, little change is observed the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $1 \cdot \mathbf{d p p o}$, and concentrations of intact cluster remain constant (as determined by the integration of the diagnostic downfield cisoid $o-\mathrm{Ph} \mathrm{CH}$ at 8.45 ppm vs. internal TMB standard; Figures S10-S11). In contrast, the integration of ${ }^{1} \mathrm{H}$ NMR signals for $\mathbf{1 \bullet d p p o}$ in toluene- d_{8} decrease from $0.6-0.3$
mM over the course of 1-2 days, and then remain constant (Figure S12). However, no new signals are observed and the color of the solution remains the characteristic bright pink color of $\mathbf{1} \cdot \mathbf{d p p o}$. This may indicate the gradual precipitation of $\mathbf{1 \bullet d p p o}$, as this cluster is observed to be much less soluble in toluene than in benzene and THF, and partially remains as undissolved pink solid when attempting to create solutions of ca. $1 \mathrm{mM} 1 \cdot$ dppo in toluene. Based on this information, we conclude that $\mathbf{1} \cdot \mathbf{d p p o}$ is the most stable and solution-processible in THF and benzene, is stable though markedly less soluble in toluene.

By contrast, the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{1} \cdot \mathbf{d p p o}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ show the most drastic changes over time, with consistent decreases in ${ }^{1} \mathrm{H}$ signal integrations for intact $\mathbf{1} \cdot \mathbf{d p p o}$ along with the growth of new signals corresponding to phosphine-bound cluster degradation products and phosphine sulfide $\left(\mathrm{RPh}_{2} \mathrm{P}=\mathrm{S}\right.$; $\delta_{\mathrm{P}}-12$ and +43 ppm , respectively; Figure S13), thus indicating that the mechanism of cluster degradation in dichloromethane involves S -atom extrusion from the $\left[\mathrm{Cu}_{12} \mathrm{~S}_{6}\right]$ core. While the specific mechanism of $\mathbf{1}$ •dppo degradation is currently unclear, S -atom extrusion may potentially arise from the spontaneous abstraction of chloride from dichloromethane solvent and its binding to copper sites in place of sulfide.

A similar pathway has been shown to play a key role in the formation of multinuclear Cu^{I} clusters from tetrakis(acetonitrile) copper(i) hexafluorophosphate $\left(\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{PF}_{6}\right]\right)$ and a combination of bis(diphenylphosphino)methane and dialkyldithiophosphate ligands, as reported by Liu and coworkers. ${ }^{9}$ Notably, syntheses performed in dichloromethane and chloroform yielded chloride-bridged tricopper and hexacopper clusters via the abstraction of chloride from solvent, whereas synthesis performed in tetrahydrofuran yielded a tricopper cluster with a different core configuration and no bridging chloride. ${ }^{9}$

Figure S10: ${ }^{1} \mathrm{H}$ NMR spectra (left, $400 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}$) and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (right, 162 MHz , THFd_{8}) of $\mathbf{1} \cdot \mathrm{dppo}^{2}$ in THF- d_{8} over the course of 21 days.

Figure S11: ${ }^{1} \mathrm{H}$ NMR spectra (left, $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (right, $162 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of $1 \cdot$ dppo in $\mathrm{C}_{6} \mathrm{D}_{6}$ over the course of 21 days.

Figure S12: ${ }^{1} \mathrm{H}$ NMR spectra (left, 400 MHz , toluene- d_{8}) and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (right, 162 MHz , toluene- d_{8}) of $\mathbf{1} \cdot \mathbf{d p p o}$ in toluene- d_{8} over the course of 21 days.

Figure S13: ${ }^{1} \mathrm{H}$ NMR spectra (left, $400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (right, 162 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) of $1 \cdot$ dppo in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ over the course of 21 days.

Figure S14: Concentration of $\mathbf{1}$ •dppo over time in solutions of toluene- d_{8}, dichloromethane- d_{2}, benzened_{6}, and THF- d_{8}. For each solvent, solutions of $\mathbf{1} \cdot \mathrm{dppo}$ are stirred in an air-free and water-free environment inside a nitrogen-filled glovebox. Concentration of $\mathbf{1} \bullet \mathbf{d p p o}$ is determined by ${ }^{1} \mathrm{H}$ NMR versus a 1,3,5-trimethoxybenzene internal quantitaive standard.

Electrochemical Characterization

Electrochemical experiments were performed in an N_{2}-filled glovebox using a WaveNowXV Potentiostat. Data processing was performed using the Aftermath software package (Pine Research). Measurements were taken using a three-electrode setup consisting of a 3 mm diameter glassy carbon disk working electrode (CH Instruments), a platinum wire counter electrode (CH Instruments), and a low-profile non-aqueous silver wire reference electrode and capillary (Pine Research). The glassy carbon disk working electrode was polished with an alumina and water slurry ($0.05 \mu \mathrm{~m}$ particle size, BASi Research Products), rinsed with methanol, and dried prior to use. The silver wire reference electrode was lightly polished using 600 grit sandpaper, rinsed with methanol, and dried before insertion into a capillary containing a solution of 100 $\mathrm{mM} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ electrolyte and 10 mM AgNO 3 in acetonitrile. All working electrode potentials were measured versus the $\mathrm{Ag} / \mathrm{AgNO}_{3}$ redox couple and calibrated to the $\mathrm{Fc}^{0 /+}$ redox couple using an internal ferrocene reference. Analyte solutions were prepared from dry, degassed solvent containing $100 \mathrm{mM}\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ as the supporting electrolyte. $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ electrolyte was purified by thermal recrystallization from ethyl acetate prior to use.

Analysis of the $[\mathbf{1} \text { •dppo }]^{0 /+}$ redox couple

The Randles-Ševčík equation, shown below, was used to determine the number of electrons (n) involved in a well-behaved redox couple according to equation S3:

Eq. S3

$$
i_{p}=0.4463 n F A C\left(\frac{n F v D}{R T}\right)^{1 / 2}
$$

In this equation, i_{p} is peak current measured at a given scan rate v. The surface area of the working electrode is denoted by $A\left(0.07 \mathrm{~cm}^{2}\right) ; C$ is the concentration of analyte $(1.00 \mathrm{mM}) ; D$ is the diffusion coefficient of the analyte in solution at temperature $T(298.15 \mathrm{~K}) ; F$ is Faraday's constant ($96485 \mathrm{C} \mathrm{mol}^{-1}$); and R is the ideal gas constant $\left(8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$. The diffusion coefficient of $1 \cdot \mathrm{dppo}$ was determined by ${ }^{1} \mathrm{H}$ DOSY NMR measurements taken under identical conditions (THF-d d_{8} at $25^{\circ} \mathrm{C}: D=5.1 \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{s}$) and used to solve for the number of electrons involved in the redox couple measured at $-0.50 \mathrm{~V} \mathrm{vs} \mathrm{Fc}^{0 /+}$ ($\mathrm{Ta}-$ ble S2). Based on these results, we conclude that the wave measured at -0.50 V vs $\mathrm{Fc}^{0 /+}$ corresponds to a one-electron redox couple, and thus assign this feature as the $[1 \cdot d p p o]^{0 /+}$ redox couple. Minor systematic decreases in $i_{p a}$ arise from distortion of the baseline at faster scan rates.

Table S2: Randles-Ševčík analysis of $[\mathbf{1} \bullet \mathbf{d p p o}]^{0 /+}$

Scan rate $(\mathrm{mV} / \mathrm{s})$	Anodic peak current $\left(\mathrm{i}_{\text {pa }}, \mu \mathrm{A}\right)$	Estimated number of electrons (n)
10	3.95	0.95
20	5.26	0.91
50	7.64	0.86
100	11.1	0.87
250	15.7	0.81
500	21.0	0.79

A scan rate dependence study was conducted to assess the (electro)chemical reversibility of the $[1 \cdot d p p o]^{0 /+}$ redox couple. Within a scan window of -0.15 to -0.85 V , the ratio of the anodic and cathodic peak currents $i_{p a} i_{p c}$ is measured to be 1.12 , indicating quasireversibility. The peak-to-peak separation, $\Delta \mathrm{E}_{\mathrm{p}}$, increases from 84 mV at a scan rate of $10 \mathrm{mV} / \mathrm{s}$ to 224 mV at $500 \mathrm{mV} / \mathrm{s}$ consistent with the low conductivity of the THF solvent medium.

Figure S15: Cyclic voltammograms of $1 \cdot \mathbf{d p p o}\left(1 \mathrm{mM} 1 \cdot \mathbf{d p p o} ; 100 \mathrm{mM}\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]\right.$ in THF) collected at scan rates of $10-500 \mathrm{mV} / \mathrm{s}$ (a) and anodic ($i_{p a}$) and cathodic ($i_{p c}$) peak currents, plotted versus the square root of scan rate (b).

Figure S16: Cyclic voltammograms collected for $\mathbf{1 \cdot d p p o}$ ($1 \mathrm{mM} 1 \cdot$ dppo and $100 \mathrm{mM}\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ in THF; $20 \mathrm{mV} / \mathrm{s}$) with varied scan windows showing that the quasireversibility of the $[1 \cdot \mathrm{dppo}]^{0 /+}$ redox couple is lost when scanning is performed beyond the onset of irreversible oxidation events.

Figure S17. (Top) Cyclic voltammetry and (Bottom) differential pulse voltammetry measurements of $\mathbf{1} \cdot \mathbf{d p p t}\left(<1 \mathrm{mM} 1 \cdot d p p t\right.$ and $100 \mathrm{mM}\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ in THF; $100 \mathrm{mV} / \mathrm{s}$) collected over a range of anodic vertex potentials. Voltammograms collected over the narrowest and widest scan windows are highlighted in black and orange traces, respectively.

Figure S18. (Top) Cyclic voltammetry and (Bottom) differential pulse voltammetry measurements of $1 \cdot \mathbf{P P h}_{2} \mathbf{E t}\left(1 \mathrm{mM} 1 \cdot \mathbf{P P h}_{2} \mathbf{E t}\right.$ and $100 \mathrm{mM}\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ in THF; $100 \mathrm{mV} / \mathrm{s}$) collected over a range of anodic vertex potentials. Voltammograms collected over the narrowest and widest scan windows are highlighted in black and red traces, respectively.

Oxidative Reactivity Studies

Redox titrations of $\mathbf{1} \bullet$ dppo with $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]$. Redox titrations were performed using stock solutions of 1•dppo (2.5 mM) and 1,3,5-trimethoxybenzene (TMB; 2.5 mM) in THF- d_{8} and a stock solution of [$\left.\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}(62.5 \mathrm{mM})$. Seven separate vials were charged with 0.25 mL each of the $\mathbf{1} \cdot \mathbf{d p p o}$ and TMB stock solution and then chilled to $0{ }^{\circ} \mathrm{C}$ in the glovebox cold well. To each vial was added $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]$ stock solution ($0 / 10 / 20 / 30 / 40 / 50 / 60 \mu \mathrm{~L} ; 0.0 / 0.5 / 1.0 / 1.5 / 2.0 / 2.5 / 3.0$ equivalents of $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}\right]^{+}$). The contents were stirred for 30 min at $0^{\circ} \mathrm{C}$ followed by 30 min at RT. Reaction solutions, ranging from red to orange in color depending on the number of $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]$ equivalents added, were transferred to NMR tubes for analysis. Concentrations of $\mathbf{1 \bullet} \mathbf{d p p o}$ and phosphine sulfide products were determined by quantitative ${ }^{1} \mathrm{H}$ NMR relative to TMB. Concentrations of $1 \cdot d p p o$ were determined via the summed integrations of the signals for the cisoid $\mathrm{Ph} o-\mathrm{CH}(8.47 \mathrm{ppm})$ and transoid $\mathrm{Ph} o-\mathrm{CH}(7.06 \mathrm{ppm})$, while the phosphine sulfide products were quantitated by the integration of the $\mathrm{Ph} o-\mathrm{CH}(7.94 \mathrm{ppm})$. $\mathrm{Be}-$ cause this latter signal may correspond to either the monosulfide or the disulfide products dppoS and dppoS $_{2}$, we track the concentrations shown in Figure 5 of the main text according to phosphorus atom equivalents (in $1 \cdot$ dppo, dppoS, and dppoS_{2}, there are four diagnostic $\mathrm{Ph} o-\mathrm{CH}$ per phosphorus atom).

Figure S19: Redox titrations of $1 \cdot$ dppo and [Cp* $\left.{ }_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]$: ${ }^{1} \mathrm{H}$ NMR analysis conducted in THF- $\mathrm{d}_{8} / \mathrm{CD}_{3} \mathrm{CN}$ $(400 \mathrm{MHz})$ for reactions in which $0.0 / 0.5 / 1.0 / 1.5 / 2.0 / 2.5 / 3.0$ equiv $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]$ together with independently synthesized $\mathrm{dppoS}_{2}\left(\mathrm{THF}-\mathrm{d}_{8}, 400 \mathrm{MHz}\right.$; bottom). Color scheme: $\mathbf{1}^{\bullet} \mathbf{d p p o}$, red; phosphine sulfide $\mathrm{Ph} o-\mathrm{CH}$, grey. Other signals corresponding to residual dppo of cluster decomposition products overlap with meta and para phenyl protons of phosphine sulfide products. These signals are highlighted in a grey and blue striped pattern.

Figure S20: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra for $\mathbf{1} \bullet$ dppo reacted with $0.0 / 0.5 / 1.0 / 1.5 / 2.0 / 2.5 / 3.0$ equivalents of $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]\left(\mathrm{THF}-\mathrm{d}_{8} / \mathrm{CD}_{3} \mathrm{CN}, 162 \mathrm{MHz}\right.$) and independently synthesized dppoS_{2} (THF- $\mathrm{d}_{8}, 400 \mathrm{MHz}$). Color scheme: 1•dppo, red; phosphine sulfide $\mathrm{Ph} o-\mathrm{CH}$, grey. Other signals corresponding to residual dppo of cluster decomposition products overlap with meta and para phenyl protons of phosphine sulfide products. These signals are highlighted in a grey and blue striped pattern. Signals corresponding to the $\left[\mathrm{PF}_{6}\right]^{-}$counterion are highlighted in green.

Reactivity of $\mathbf{1} \cdot \mathrm{dppo}$ with air.

A THF- d_{8} solution of $\mathbf{1} \cdot \mathbf{d p p o}$ and TMB (internal standard for quantitative NMR; ca. 1:1 concentration versus $1 \cdot$ dppo) was prepared in an NMR tube. After collecting initial ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, the sample was briefly exposed to air (ca. 1 min), shaken vigorously, and then recapped. ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were then collected again 1 week later. After this period, the amount of $\mathbf{1} \cdot \mathbf{d p p o}$ present in solution was 30% of its original concentration based on integration of the diagnostic ${ }^{1} \mathrm{H}$ NMR signal for the cisoid $\mathrm{Ph} o-\mathrm{CH}$ proton.
${ }^{1} \mathrm{H}$ NMR (THF-d $8,400 \mathrm{MHz} ; \mathrm{t}=0$): $\delta 8.43\left(1 \cdot\right.$ dppo, cisoid $\mathrm{Ph} \mathrm{o}-\mathrm{CH} ; 30 \%$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF- $\mathrm{d}_{8}, 400$ $\mathrm{MHz} ; \mathrm{t}=0): \delta-23.0\left(1 \cdot \mathbf{d p p o},\left[\mathrm{Cu}_{12} \mathrm{~S}_{6}\right]-\mathrm{P}\right)$.

The major oxidation products observed by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR were assigned as the corresponding dppo phosphine oxides and phosphine sulfides (dppoO/ dppoO_{2} and $\mathrm{dppoS} / \mathrm{dppoS}_{2}$) by comparison of the diagnostic ${ }^{1} \mathrm{H}$ NMR signals (for the $\mathrm{Ph} o-\mathrm{CH}$ protons) and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals to authentic samples of dppoO_{2} and dppoS_{2}. These results demonstrate that $\mathbf{1} \cdot \mathbf{d p p o}$ is air-sensitive in solution and slowly degrades via intramolecular $\mathrm{P}=\mathrm{S}$ bond formation or direct oxygenation of the supporting dppo ligands.

NMR characterization for 1,8-bis(diphenylphosphino)octane dioxide is reported for deuterated chloroform. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.75-7.66(\mathrm{Ph} \mathrm{o-CH}),{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 33.2 .{ }^{10}$ These values closely match our observations in THF- d_{8} for what we assign as 1,8 -bis(diphenylphosphino)octane dioxide: ${ }^{1} \mathrm{H}$ NMR (THF-d $8,400 \mathrm{MHz}$): $\delta 7.80$ (Ph o-CH; 51\%). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF- $\mathrm{d}_{8}, 400 \mathrm{MHz}$): $\delta 27.4$.

We performed the independent synthesis and characterization of 1,8-bis(diphenylphosphino)octane disulfide as outlined in the synthesis section above: ${ }^{1} \mathrm{H}$ NMR (THF-d $8,400 \mathrm{MHz}$): $\delta 7.91$ ($\mathrm{Ph} \mathrm{o}-\mathrm{CH} ; 19 \%$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (THF- $\mathrm{d}_{8}, 400 \mathrm{MHz}$): $\delta 41.6$.

Figure S21: Stacked ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (left and right, respectively, 400 MHz , THF- d_{8})of 1•dppo prepared under a nitrogen atmosphere (top) and the same sample after exposure to air for one week (bottom). Color scheme: 1•dppo, red; phosphine sulfide $\mathrm{Ph} o-\mathrm{CH}$, grey. Other signals corresponding to residual dppo of cluster decomposition products overlap with meta and para phenyl protons of phosphine sulfide products. These signals are highlighted in a grey and blue striped pattern.

Figure S22: ${ }^{1} \mathrm{H}$ DOSY spectrum of $\mathbf{1} \cdot \mathbf{d p p o}\left(400 \mathrm{MHz}\right.$, THF- $\left.\mathrm{d}_{8}\right)$ after exposure to air for one week. Color scheme: 1•dppo, red; phosphine sulfide $\mathrm{Ph} o-\mathrm{CH}$, grey. Other signals corresponding to residual dppo of cluster decomposition products overlap with meta and para phenyl protons of phosphine sulfide products. These signals are highlighted in a grey and blue striped pattern.

Powder X-ray Diffraction (PXRD) Analysis

Powder X-ray diffraction (PXRD) measurements were performed at RT using a Rigaku Smartlab SE diffractometer. Optics alignment was performed prior to each measurement, and the signal intensities presented in Figure S23 are scaled according to the peak intensity detected along the ω-axis. Samples for PXRD were prepared by grinding the dried crystalline material to a fine powder using a glass mortar and pestle.

Oxidative reactivity studies of $\mathbf{1} \bullet \mathbf{d p p o}$. To assess the air-sensitivity of $\mathbf{1} \cdot \mathbf{d p p o}$, samples of $\mathbf{1} \cdot \mathbf{d p p o}$ were exposed to air in the solid state and then subjected to PXRD analysis. For comparison, a chemically oxidized sample of $\mathbf{1} \bullet$ dppo was subjected to a similar analysis as follows.

1) Air oxidation in the solid state: 1•dppo was freshly prepared as described above and a sample was subjected to PXRD analysis (Figure S23, red trace). The same sample was then left exposed to air under ambient conditions for 14 days, after which time the PXRD pattern was measured again (Figure S23, black trace). The air-oxidized sample showed brown discoloration from the original red color of fresh $\mathbf{1 \bullet d p p o}$ but exhibited a very similar PXRD pattern to the original cluster, with a slightly higher baseline.
2) Chemical oxidation: These studies followed a similar protocol to the redox titrations described above. A 250 mL bottle was charged with solid $1 \cdot$ dppo ($153.5 \mathrm{mg}, 0.05 \mathrm{mmol}$) and 2-methyltetrahydrofuran (45 mL) and the resulting red solution was chilled to $0{ }^{\circ} \mathrm{C}$. Separately, a 20 mL vial was charged with solid
$\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]$ ($56.2 \mathrm{mg}, 0.12 \mathrm{mmol}, 2.4$ equiv) and acetonitrile (2 mL). This stock solution of $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]$ was added to the chilled $1 \cdot$ dppo solution and allowed to stir at $0^{\circ} \mathrm{C}$ for 2 hours before warming to RT and stirring for an additional hour. During this time, the solution changed from red to orange in color. Solvent was removed in vacuo and the resulting brown solid was triturated with diethyl ether to dissolve $\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}$ formed from the reaction. The diethyl ether suspension was filtered through a coarse porosity glass frit, and dried in vacuo to afford a brown powder (159.2 mg) that was analyzed by PXRD (Figure S23, gray trace). The PXRD pattern of the chemically-oxidized sample appeared amorphous with a wide, low-intensity signal at $\sim 20^{\circ}$ that roughly aligns with the distorted baseline of the partially oxidized air-exposed sample of 1•dppo (black trace, Figure S23)

Figure S23: Powder X-ray diffraction patterns collected for $\mathbf{1 \bullet}$ dppo (red trace), the same sample of $\mathbf{1} \cdot \mathbf{d p p o}$ after exposure to air for 14 days (black trace), and a sample of $\mathbf{1} \bullet$ dppo treated with $\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right]$ (grey trace).

Analysis of crystallographic metrics for clusters 1

Based on reported crystallographic data for clusters $\mathbf{1},{ }^{1,8}$ there exist three types of $\mathrm{Cu}-\mathrm{S}$ bonds within the [$\mathrm{Cu}_{12} \mathrm{~S}_{6}$] nanocluster core: those that comprise the $\mathrm{Cu}_{4} \mathrm{~S}$ pyramid substructures present at opposite ends of the cluster (colored blue in Figure S24), those that comprise the $\mathrm{Cu}_{4} \mathrm{~S}_{4}$ equator substructure at center of the cluster (colored green in Figure S24), and those that span across the cluster to connect the $\mathrm{Cu}_{4} \mathrm{~S}$ and $\mathrm{Cu}_{4} \mathrm{~S}_{4}$ substructures (colored red in Figure S24). Among these three types of $\mathrm{Cu}-\mathrm{S}$ bonds, those spanning across the cluster display consistently longer bond lengths (Table S3), suggesting that they are relatively weaker. Among clusters $\mathbf{1} \cdot \mathbf{P P h}_{\mathbf{2}} \mathbf{E t}$, $\mathbf{1} \cdot \mathbf{d p p t}$, and $\mathbf{1} \cdot \mathbf{d p p o}$, only $\mathbf{1} \cdot \mathbf{d p p o}$ possesses ditopic ligands that support these $\mathrm{Cu}-\mathrm{S}$ bonds by binding at opposite ends of the cluster core. This is consistent with the unique solution stability observed for $\mathbf{1} \boldsymbol{\bullet}$ dppo.

Figure S24: Classification of $\mathrm{Cu}-\mathrm{S}$ bonds in $\mathrm{Cu}_{12} \mathrm{~S}_{6}$ clusters 1.

Table S3: Crystallographic $\mathrm{Cu}-\mathrm{S}$ bond distances (\AA) reported for clusters 1

1•PPh ${ }^{\text {Et }}{ }^{8}$			1•dppt ${ }^{1}$			1•dppo ${ }^{1}$		
$\mathrm{Cu}_{4} \mathrm{~S}$ Pyramid	$\mathrm{Cu}_{4} \mathrm{~S}_{4}$ Equator	Across	$\mathrm{Cu}_{4} \mathrm{~S}$ Pyramid	$\mathrm{Cu}_{4} \mathrm{~S}_{4}$ Equator	Across	$\mathrm{Cu}_{4} \mathrm{~S}$ Pyramid	$\mathrm{Cu}_{4} \mathrm{~S}_{4}$ Equator	Across
2.264	2.175	2.399	2.261	2.155	2.378	2.261	2.170	2.372
2.271	2.136	2.387	2.268	2.168	2.378	2.270	2.174	2.367
2.252	2.183	2.377	2.261	2.159	2.368	2.266	2.175	2.357
2.267	2.152	2.373	2.268	2.169	2.368	2.271	2.180	2.364
2.264	2.175	2.387	2.261	2.155	2.378	2.60	2.176	2.364
2.271	2.136	2.399	2.268	2.168	2.378	2.266	2.179	2.371
2.252	2.183	2.373	2.261	2.159	2.368	2.268	2.174	2.368
2.267	2.152	2.377	2.268	2.169	2.368	2.252	2.174	2.368
$\begin{gathered} \hline \text { Avg. } \\ 2.264 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Avg. } \\ 2.162 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Avg. } \\ 2.384 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Avg. } \\ 2.265 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Avg. } \\ 2.163 \\ \hline \end{gathered}$	$\begin{array}{r} \hline \text { Avg. } \\ 2.373 \\ \hline \end{array}$	$\begin{gathered} \hline \text { Avg. } \\ 2.264 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Avg. } \\ 2.175 \end{gathered}$	$\begin{gathered} \hline \text { Avg. } \\ 2.366 \end{gathered}$
$\begin{gathered} \hline \text { St. Dev. } \\ 0.006 \end{gathered}$	$\begin{gathered} \hline \text { St. Dev. } \\ \mathbf{0 . 0 0 3} \end{gathered}$	$\begin{gathered} \text { St. Dev. } \\ 0.004 \\ \hline \end{gathered}$	$\begin{gathered} \text { St. Dev. } \\ 0.004 \end{gathered}$	$\begin{gathered} \hline \text { St. Dev. } \\ 0.006 \end{gathered}$	$\begin{gathered} \text { St. Dev. } \\ \mathbf{0 . 0 0 5} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { St. Dev. } \\ 0.007 \end{gathered}$	$\begin{gathered} \hline \text { St. Dev. } \\ 0.019 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { St. Dev. } \\ 0.010 \end{gathered}$

From the same crystallographic data sets, we note that one set of the phenyl rings in coordinated phosphine ligands are closely packed in a propeller-shaped configuration about the $\mathrm{Cu}_{4} \mathrm{~S}$ pyramid substructures of the cluster $1 \cdot \mathbf{d p p o}$ (Figure 2c in the main text). ${ }^{1,8}$ This places half of the $\mathrm{Ph} o-\mathrm{CH}$ (the position of which in reported crystallographic data is calculated using a riding model) in close proximity to the apical $\mathrm{Cu}_{4} \mathrm{~S}$ sulfides (CH---S: $2.78 \pm 0.2 \AA, \angle 142-164^{\circ}$; Table S4). By comparison, tabulated data compiled from the Cambridge Crystallographic Data Center (CCDC) ${ }^{11}$ reveals most CH---SM ($\mathrm{M}=$ group 11 transition metal) contacts to lie in the range of 2.84-3.40 \AA with CH---S angles between $117-135^{\circ}$ or $144-180^{\circ}$, and thus the values observed for $\mathbf{1}$ •dppo $\mathrm{Ph} o-\mathrm{CH}$ are among the shortest of $\mathrm{CH}--$-SM contacts observed for group 11 metals to date. In addition, these values lie well below the sum of the van der Waals radii ($3.00 \AA$) for H and S and are consistent with substantial attractive $\mathrm{CH}---\mathrm{S}$ interactions being present.

Relatively short Ph o-CH---S distances are also observed for $\mathbf{1} \cdot \mathbf{d p p t}$ and $\mathbf{1} \cdot \mathbf{P P h}_{2} \mathbf{E t}$, suggesting that attractive interactions may exist in these clusters as well (avg. $2.92 \pm 0.21 \& 2.87 \pm 0.12 \AA$, respectively; Table S4). However, even with the dppt and $\mathrm{PPh}_{2} E t$ ligands remaining bound in place, the clusters $\mathbf{1} \cdot \mathbf{d p p t}$ and $1 \cdot \mathbf{P P h}_{2} \mathbf{E t}$ still contain unsupported $\mathrm{Cu}-\mathrm{S}$ bonds along at least two axes of the $\left[\mathrm{Cu}_{12} \mathrm{~S}_{6}\right]$ core. We conclude that while attractive CH---S interactions may contribute to the rigid, locked configuration of ligands about 1•dppo, the primary cause of stability remains the long octyl linker which allows the ligands to favourably span across all 3 axes of the core.

Table S4: Crystallographic Ph o-CH---S distances and angles reported for clusters $\mathbf{1}$

1•PPh $^{2} \mathbf{E t}^{8}$		1•dppt			
$\mathrm{d}(\mathrm{CH}---\mathrm{S})(\AA)$	$\angle(\mathrm{C}-\mathrm{H}-\mathrm{S})\left({ }^{\circ}\right)$	$\mathrm{d}(\mathrm{CH}--\mathrm{S})(\AA)$	$\angle(\mathrm{C}-\mathrm{H}-\mathrm{S})\left({ }^{\circ}\right)$	1•dppo 1	
2.892	158.1	3.051	$133 .-\mathrm{S})(\AA)$	$\angle(\mathrm{C}-\mathrm{H}-\mathrm{S})\left({ }^{\circ}\right)$	
2.814	163.1	2.890	160.3	2.841	141.9
2.945	161.4	2.795	133.5	2.681	162.1
2.842	165.6	2.924	152.9	2.818	153.5
2.892	158.1	3.051	133.8	2.790	155.4
2.814	163.1	2.890	160.3	2.702	158.7
2.945	161.4	2.795	133.5	2.985	164.0
2.842	165.6	2.924	152.9	2.694	148.9
Avg. 2.873	Avg. 162.0	Avg. 2.915	Avg. 145.1	Avg. 2.786	Avg. 155.4

Std. Dev. 0.115	Std. Dev. 6.3	Std. Dev. 0.212	Std. Dev. 27.3	Std. Dev. 0.100	Std. Dev. 7.3

NMR SPECTRA

Figure S25: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1} \cdot \mathbf{P P h}_{2} \mathbf{E t}\left(400 \mathrm{MHz}\right.$, THF- $\left.\mathrm{d}_{8}\right)$ showing solution speciation. Trace phosphine oxides and phosphine sulfides are marked by * and \ddagger, respectively.

Figure S26: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1} \cdot \mathbf{P P h}_{2} \mathbf{E t}\left(162 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right)$ showing evidence of solution speciation. The ${ }^{31} \mathbf{P}$ NMR shift of $\mathbf{1} \bullet \mathbf{P P h}_{2} \mathbf{E t}$ matches that of free ligand PPh_{2} Et but shows a broadened signal. Trace phosphine oxides and phosphine sulfides are marked by * and \ddagger, respectively.

Figure S27: ${ }^{1} \mathrm{H}$ NMR spectrum of the free ligand $\mathrm{PPh}_{2} \mathrm{Et}\left(400 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right)$.

Figure S28: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the free ligand $\mathrm{PPh}_{2} \mathrm{Et}\left(162 \mathrm{MHz}\right.$, THF- $\left.\mathrm{d}_{8}\right)$.

Figure S29: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1} \cdot \mathbf{d p p t}\left(400 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right)$ showing evidence of solution speciation. Trace phosphine oxides and phosphine sulfides are marked by * and \ddagger, respectively.

Figure S30: ${ }^{1} \mathrm{H}$ DOSY NMR spectrum of $\mathbf{1} \cdot \mathbf{d p p t}\left(400 \mathrm{MHz}\right.$, THF- $\left.\mathrm{d}_{8}\right)$ showing evidence of solution speciation. The measured diffusion coefficient $\mathrm{D}=6.8 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$ corresponds to a hydrodynamic radius of $\mathrm{r}_{\mathrm{H}}=7.0 \AA$, whereas crystallographic characterization of $\mathbf{1} \cdot \mathbf{d p p t}{ }^{1}$ predicts a radius of $9.2 \AA$ for the intact cluster.

Figure S31: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1} \cdot \mathbf{d p p t}\left(162 \mathrm{MHz}\right.$, THF- d_{8}) showing evidence of solution speciation. Trace phosphine oxides and phosphine sulfides are marked by * and \ddagger, respectively.

Figure S32: ${ }^{1} \mathrm{H}$ NMR spectrum of the free ligand dppt ($400 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}$).

Figure S33: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the free ligand dppt (162 MHz, THF- d_{8}).

Figure S34: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1} \cdot \mathbf{d p p o}\left(400 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right)$.

Figure S35: ${ }^{1} \mathrm{H}^{1} \mathrm{H}$ COSY NMR spectrum of $\mathbf{1} \bullet$ dppo $\left(400 \mathrm{MHz}\right.$, THF- $\left.\mathrm{d}_{8}\right)$.

Figure S36: ${ }^{1} \mathrm{H}{ }^{1} \mathrm{H}$ NOESY NMR spectrum of $\mathbf{1} \bullet$ dppo $\left(400 \mathrm{MHz}\right.$, THF- $\left.\mathrm{d}_{8}\right)$.

Figure S37: ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC NMR spectrum of $1 \bullet$ dppo. $\left(400 \mathrm{MHz}\right.$, THF- d_{8}).

Figure S38: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1} \cdot \mathbf{d p p o}\left(162 \mathrm{MHz}\right.$, THF- d_{8}).

Figure S39: ${ }^{1} \mathrm{H}$ NMR spectrum of the free ligand dppo (400 MHz , THF- d_{8}).

Figure S40: ${ }^{1} \mathrm{H}$ NMR spectrum of independently synthesized $\mathrm{dppoS}_{2}\left(400 \mathrm{MHz}\right.$, THF- $\left.\mathrm{d}_{8}\right)$.

Figure S41: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of independently synthesized $\mathrm{dppoS}_{2}\left(162 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right)$.

COMPUTATIONAL DETAILS

All DFT calculations were performed using the Gaussian 16 software package. Calculations were performed by unrestricted Kohn-Sham DFT using the BP86 functional and the def2-SVP basis set on all atoms. ${ }^{12}$ The D3 model for dispersion correction was used in all calculations. ${ }^{13,14}$ Three-dimensional models of optimized structures and orbital maps were created using PyMOL.

These methods are chosen in part for expedience and sake of computational cost when handling large systems containing over 200 atoms. Eichhöfer and coworkers have previously demonstrated the same methods to accurately reproduce predicted electronic transitions and UV-Vis electronic absorption spectra for $\mathbf{1} \cdot \mathbf{d p p o}$ and $\mathbf{1 \cdot d p p t . ~}{ }^{1}$ In general, we find reasonable agreement between DFT-predicted bond metrics for the truncated model complex $\mathbf{1}^{\prime} \cdot \mathbf{P P h}_{\mathbf{2}} \mathbf{E t}$ and crystallographic bond metrics for $\mathbf{1} \cdot \mathbf{d p p o}$, although $\mathbf{C u}-\mathrm{Cu}$ bond lengths in the computed structure appear to be systematically underestimated (Figure S42 and Table S5).

Figure S42: DFT-predicted structure of truncated model complex $\mathbf{1}^{\prime} \cdot \mathbf{P P h}_{2} \mathbf{E t}$ (left) and reported crystallographic structure of $\mathbf{1} \cdot \mathbf{d p p o}$ (right).

Table S5: DFT-predicted bond lengths of $\mathbf{1} \cdot \mathbf{P P h}_{2} \mathbf{E t}$ and crystallographic bond lengths of $\mathbf{1} \bullet \mathbf{d p p o}$

	DFT bond lengths for 1 '• $\mathbf{P P h}_{2} \mathbf{E t}(\AA)$	SC-XRD bond lengths for 1•dppo (\AA)
Avg. $\mathrm{Cu}-\mathrm{Cu}$ (in $\mathrm{Cu}_{4} \mathrm{~S}$ pyramids)	2.736	2.884
Avg. $\mathrm{Cu}-\mathrm{S}$ (in $\mathrm{Cu}_{4} \mathrm{~S}$ pyramids)	2.253	2.262
Avg. $\mathrm{Cu}-\mathrm{Cu}$ (in $\mathrm{Cu}_{4} \mathrm{~S}_{4}$ equator)	2.445	2.946
Avg. $\mathrm{Cu}-\mathrm{S}$ (in $\mathrm{Cu}_{4} \mathrm{~S}_{4}$ equator)	2.229	2.175
Avg. $\mathrm{Cu}-\mathrm{S}$ (bridging $\mathrm{Cu}_{4} \mathrm{~S}$ and $\mathrm{Cu}_{4} \mathrm{~S}_{4}$ parts)	2.380	2.366

Geometry optimizations were performed on neutral, cationic, and dicationic versions of $\mathbf{1}^{\prime} \cdot \mathbf{P P h}_{2} \mathbf{E t}$. In general, more positively charged clusters possess longer $\mathrm{Cu}-\mathrm{Cu}$ bonds within the central $\mathrm{Cu}_{4} \mathrm{~S}_{4}$ equator substructure and longer $\mathrm{Cu}-\mathrm{S}$ bonds within apical $\mathrm{Cu}_{4} \mathrm{~S}$ pyramid substructures while all other bond distances are contracted. Specifically, we note that the average distance between phosphorous atoms and equatorial sulfides is smaller in the charged species $\left[1{ }^{\prime} \cdot \mathbf{P P h}_{2} \mathbf{E t}\right]^{+}$and $\left[\mathbf{1}^{\prime} \cdot \mathbf{P P h}_{2} \mathbf{E t}\right]^{2+}$ than in the neutral species $\left[1, \cdot \mathbf{P P h}_{2} \mathbf{E t}\right]$. This change, combined with the accumulation of partial positive charge at phosphorous atoms, may prime phosphines for intramolecular $\mathrm{P}=\mathrm{S}$ bond formation via the nucleophilic attack of an equatorial sulfide.

Table S6: DFT-predicted bond lengths of $\left[1, \cdot \mathbf{P P h}_{2} \mathbf{E t}\right]^{0+/ 2+}$

	$1 \cdot \cdot \mathrm{PPh}_{2} \mathbf{E t}$ (Å)	$\underset{(\AA)}{\left[\mathbf{1} \cdot \bullet \mathbf{P P h}_{2} \mathbf{E}\right]^{+}}$	$\left[1^{\prime} \cdot \mathbf{P P h}_{2} \mathbf{E t}\right]^{2+}$ (Å)
Avg. $\mathrm{Cu}-\mathrm{Cu}$ (in $\mathrm{Cu}_{4} \mathrm{~S}$ pyramids)	2.736	2.726	2.720
Avg. $\mathrm{Cu}-\mathrm{S}$ (in $\mathrm{Cu}_{4} \mathrm{~S}$ pyramids)	2.250	2.256	2.259
Avg. $\mathrm{Cu}-\mathrm{Cu}\left(\right.$ in $\mathrm{Cu}_{4} \mathrm{~S}_{4}$ equator)	2.445	2.737	2.763
Avg. $\mathrm{Cu}-\mathrm{S}$ (in $\mathrm{Cu}_{4} \mathrm{~S}_{4}$ equator)	2.229	2.225	2.224
Avg. $\mathrm{Cu}-\mathrm{S}$ (bridging $\mathrm{Cu}_{4} \mathrm{~S}$ and $\mathrm{Cu}_{4} \mathrm{~S}_{4}$ parts)	2.380	2.379	2.375
Avg. P-apical S	3.742	3.741	3.741
Avg. P-equatorial S	3.502	3.486	3.474

CARTESIAN COORDINATES OF DFT-OPTIMIZED STRUCTURES

Calculated structure: $\mathbf{1}^{\prime} \cdot \mathbf{P P h}_{2} \mathbf{E t}$

| Cu | 0.00000000 | 0.00000000 | 0.00000000 |
| :--- | :--- | :--- | :--- | :--- |
| Cu | 0.00085900 | -0.15908700 | -2.69243000 |
| Cu | 0.00039900 | 2.61115000 | -2.85118300 |
| Cu | 0.00090200 | 2.77011900 | -0.15738300 |
| Cu | -2.05572000 | -0.56219000 | -1.42556400 |
| Cu | -2.05587200 | 1.30575200 | -3.39660500 |
| Cu | -2.05519700 | 3.17069000 | -1.42571000 |
| Cu | -2.05641500 | 1.30498900 | 0.54633800 |
| Cu | -4.11271200 | -0.16011600 | -0.15878100 |
| Cu | -4.11180600 | -0.00035700 | -2.85074600 |
| Cu | -4.11238800 | 2.77103800 | -2.69214000 |
| Cu | -4.11181600 | 2.61165500 | -0.00036400 |
| S | 1.15373700 | 1.30574700 | -1.42524600 |
| S | -2.05148900 | -0.89605600 | 0.79165200 |
| S | -2.06024100 | -0.89523900 | -3.64286500 |
| S | -2.05133200 | 3.50683300 | -3.64277800 |
| S | -2.06029000 | 3.50612400 | 0.79159500 |
| S | -5.26510800 | 1.30558400 | -1.42542600 |
| P | 1.29867400 | -0.66697400 | 1.74538200 |
| P | 1.21459500 | -2.04531700 | -3.09709600 |
| P | 1.29863300 | 3.27841300 | -4.59645400 |
| P | 1.21374500 | 4.65662200 | 0.24748800 |
| P | -5.32632900 | -2.04562700 | 0.24726200 |
| P | -5.41138700 | -0.66747500 | -4.59556700 |
| P | -5.32593200 | 4.65708200 | -3.09694600 |
| P | -5.40992400 | 3.27824600 | 1.74563200 |
| C | 1.36061500 | -2.48754500 | 1.94077300 |
| C | 2.42318100 | -3.24603000 | 1.39430900 |
| H | 3.29078900 | -2.73978900 | 0.94838300 |
| C | 2.36718400 | -4.64863300 | 1.38118500 |
| H | 3.20595000 | -5.21390500 | 0.94479300 |
| C | 1.24254300 | -5.32029700 | 1.89357500 |
| H | 1.19493800 | -6.42060800 | 1.87429800 |
| C | 0.17079800 | -4.57383000 | 2.41572900 |
| H | -0.72321500 | -5.08756400 | 2.80411000 |
| C | 0.22530000 | -3.17065400 | 2.44118800 |
| H | -0.63739800 | -2.60461500 | 2.82304800 |
| C | 3.02278600 | -0.04061000 | 1.90558000 |
| C | 4.04731300 | -0.69338900 | 2.62687300 |
| H | 3.83558700 | -1.63880200 | 3.15085600 |
| C | 5.34160600 | -0.14774800 | 2.66599500 |
| H | 6.13665600 | -0.66825900 | 3.22396300 |
| C | 5.62430100 | 1.05841800 | 1.99611900 |
| H | 6.64322000 | 1.47704600 | 2.01931500 |
| C | 4.60153500 | 1.72800000 | 1.30084700 |
| H | 4.80831500 | 2.66898500 | 0.76717400 |
| C | 3.30743400 | 1.18397800 | 1.25832900 |
| | | 0 | |

H $2.507652001 .69476000 \quad 0.69936700$
C $0.46951300-0.012890003 .28416300$
H $-0.56863500-0.406843003 .23507000$
H 0.96967600-0.42756800 4.18541900
C 0.437291001 .519309003 .27620700
H $\quad 1.44924700 \quad 1.971366003 .32270600$
H $-0.055034001 .89094000 \quad 2.35038300$
H $-0.14811200 \quad 1.911784004 .13202100$
H -3.963277000 .697921004 .13049600
C -4.549423001 .091038003 .27548900
H $-5.56165400 \quad 0.639726003 .32299300$
H $-4.05836900 \quad 0.71922700 \quad 2.34905700$
C -4.580509002 .623271003 .28384700
H $-3.542104003 .01648500 \quad 3.23427100$
H $\quad-5.079917003 .03808000 \quad 4.18546400$
C $-5.471231005 .09873700 \quad 1.94148700$
C $-4.335643005 .78138000 \quad 2.44192400$
H $\quad-3.473226005 .21497500 \quad 2.82387500$
C $-4.280543007 .18453200 \quad 2.41636900$
H $\quad-3.386316007 .69792200 \quad 2.80471400$
C $\quad-5.35195300 \quad 7.93141600 \quad 1.89413200$
H $\quad-5.30384500 \quad 9.03170300 \quad 1.87475500$
C $-6.476903007 .26021700 \quad 1.38180600$
H $\quad-7.31542500 \quad 7.82583000 \quad 0.94538800$
C $-6.533505005 .85764200 \quad 1.39500900$
H -7.40132100 $5.35172400 \quad 0.94913600$
C $-7.13421400 \quad 2.65235200 \quad 1.90573700$
C $-8.158518003 .30543000 \quad 2.62705300$
H $-7.946427004 .25070800 \quad 3.15115100$
C -9.453059002 .760343002 .66599300
H -10.24791103 .281090003 .22402100
C $-9.736209001 .55444500 \quad 1.99585200$
H $-10.75530201 .13623100 \quad 2.01885400$
C $-8.71365800 \quad 0.88457700 \quad 1.30050200$
H $-8.92086900-0.056164000 .76654100$
C $-7.41931800 \quad 1.42801700 \quad 1.25819400$
Н -6.619705000 .916986000 .69920800
C 1.63165700-2.19970800-4.87906800
C 2.95369200-2.07499000-5.36062800
H 3.79212500-2.01432900-4.65031800
C 3.20419300-2.02006600-6.74249700
H 4.23971800-1.91035900-7.10225700
C 2.14248000-2.10290700-7.66025900
H 2.34117800-2.05992300-8.74286500
C 0.82301500-2.22984700-7.18648900
H -0.01689300-2.28014400-7.89796700
C 0.56439000-2.26499900-5.80835500
H -0.47620200-2.29269400-5.44611900
C 2.80451100-2.35214000-2.21273200
C 3.44648100-3.61155300-2.21658000
H 2.99489200-4.45966000-2.75573000

H	5.16008400-4.77130700-1.55022900
C	$5.26207300-2.70382000-0.86441200$
H	6.21793800-2.84322900-0.33474800
C	$4.62477300-1.45138900-0.84819300$
H	$5.06358100-0.60644100-0.29496100$
C	$3.39595300-1.27897400-1.51095800$
H	$2.87946000-0.30516500-1.46753800$
C	0.16257600-3.53477500-2.71510200
H	-0.77465200-3.36082200-3.28694200
H	0.64047600-4.45704000-3.10941400
C	-0.14254500-3.61641100-1.21681400
H	0.76744100-3.80951500-0.61641100
H	-0.58315500-2.66387900-0.85337500
H	-0.87424000-4.42095300-0.99986400
H	-3.23973700-4.42104800-1.85244600
C	-3.97042100-3.61585100-1.63452900
H	-4.88079000-3.80744500-2.23482600
H	-3.52889200-2.66345100-1.99718400
C	-4.27509900-3.53527600-0.13610400
H	-3.33762600-3.36226400 0.43561600
H	-4.75333700-4.45763600 0.25758400
C	-5.74186800-2.19988700 2.02953900
C	-7.06332000-2.07308200 2.51219200
H	-7.90224400-2.01113200 1.80259500
C	-7.31260100-2.01763600 3.89425800
H	-8.34766200-1.90628100 4.25484200
C	-6.25025700-2.10198600 4.81115500
H	-6.44798300-2.05856300 5.89392100
C	-4.93138400-2.23099800 4.33630600
H	-4.09097100-2.28250900 5.04710100
C	-4.67394400-2.26673600 2.95796100
H	-3.63369800-2.29610800 2.59489100
C	-6.91704800-2.35168400-0.63600100
C	-7.56016800-3.61051100-0.63069100
H	-7.10931300-4.45843400-0.09063300
C	-8.78075900-3.78449300-1.30394500
H	-9.27488800-4.76944500-1.29556500
C	-9.37514200-2.70258000-1.98355100
H	-10.3312350-2.84167000-2.51288900
C	$-8.73673400-1.45073500-2.00115700$
H	-9.17492700-0.60592900-2.55508200
C	$-7.50762000-1.27874300-1.33881100$
H	-6.99032400-0.30540800-1.38325800
C	$1.360617005 .09896500-4.79174400$
C	$2.423045005 .85734000-4.24482600$
H	$3.290543005 .35098700-3.79883400$
C	$2.366963007 .25993000-4.23129800$
H	$3.205581007 .82512800-3.79453000$
C	$1.242358007 .93166100-4.74369000$
H	$1.194668009 .03196300-4.72407800$

C	$0.170760007 .18530000-5.26627700$
H	-0.72321200 7.69911300-5.65464500
C	$0.225352005 .78212800-5.29217000$
H	-0.63724800 5.21612000-5.67429300
C	$3.022867002 .65207200-4.75621700$
C	$3.307582001 .42766100-4.10867400$
H	$2.507717000 .91675200-3.54994300$
C	4.60181000 0.88395300-4.15069300
H	$4.80867400-0.05690200-3.61681300$
C	$5.624659001 .55365100-4.84577500$
H	$6.643680001 .13525000-4.86853200$
C	$5.341896002 .75961200-5.51596900$
H	$6.136974003 .28021100-6.07381400$
C	$4.047449003 .30495400-5.47731100$
H	$3.835653004 .25020800-6.00156900$
C	$0.469594002 .62419300-6.13522700$
H	-0.56859700 3.01800500-6.08620500
H	$0.969774003 .03888300-7.03647400$
C	$0.437691001 .09199200-6.12701900$
H	-0.05418600 0.72039800-5.20094100
H	$1.449746000 .64019700-6.17378800$
H	-0.14795600 0.69918200-6.98251700
H	-3.96352500 1.91077400-6.98190200
C	-4.54939500 1.51837100-6.12636600
H	-4.05735500 1.88991500-5.20034000
H	-5.56125100 1.97058200-6.17322900
C	-4.58194400-0.01383900-6.13438000
H	-3.54391100-0.40805400-6.08519900
H	-5.08218000-0.42837400-7.03566300
C	-5.47421900-2.48802700-4.79072300
C	-6.53727600-3.24604100-4.24452500
H	-7.40486300-2.73941700-3.79900900
C	-6.48174600-4.64866400-4.23106700
H	-7.32084400-5.21358000-3.79485400
C	-5.35713600-5.32080500-4.74289000
H	-5.30989500-6.42112600-4.72335100
C	-4.28491600-4.57481400-5.26474500
H	-3.39090800-5.08894800-5.65260700
C	-4.33890200-3.17162500-5.29047900
H	-3.47579400-2.60593100-5.67193300
C	-7.13520700-0.04025100-4.75565200
C	-8.15993600-0.69242500-5.47719500
H	-7.94851800-1.63773300-6.00150100
C	-9.45404000-0.14631300-5.51624100
H	-10.2492260-0.66636700-6.07443900
C	-9.73632100 1.05975000-4.84602900
H	-10.7550800 1.47877100-4.86912800
C	-8.71331000 1.72878900-4.15057000
H	-8.91977600 2.66974100-3.61671500
C	-7.41941600 1.18430400-4.10813400
	-6.61944500 1.69471600-3.54910900

```
C 1.62966500 4.81178600 2.02961400
C 0.56192200 4.87738000 2.95832800
H -0.47845700 4.90518900 2.59547700
C 0.81982700 4.84237900 4.33659200
H -0.02043400 4.89288700 5.04763900
C 2.13902700 4.71535700 4.81108700
H 2.33709000 4.67249900 5.89381500
C 3.20122100 4.63226700 3.89391400
H 4.23655100 4.52252300 4.25422300
C 2.95145000 4.68696900 2.51189100
H 3.79026500 4.62606200 1.80205600
C 2.80398700 4.96355000-0.63639500
C 3.39540300 3.89066500-1.33859300
H 2.87901900 2.91681300-1.38233400
C 4.62417700 4.06333100-2.00139300
H 5.06295400 3.21854900-2.55490100
C 5.26147700 5.31575800-1.98479200
H 6.21732900 5.45536500-2.51442500
C 4.66628300 6.39756900-1.30574000
H 5.15953000 7.38296900-1.29812600
C 3.44599200 6.22294200-0.63210600
H 2.99448300 7.07086900-0.09260200
C 0.16178200 6.14575500-0.13597200
H -0.77563700 5.97222800 0.43569200
H 0.63958000 7.06824300 0.25794200
C -0.14285500 6.22646500-1.63438800
H 0.76750500 6.41808900 -2.23471300
H -0.58450000 5.27417400-1.99714900
H -0.87348100 7.03175600-1.85217000
H -3.23720700 7.03263100-0.99947400
C -3.96793100 6.22726600-1.21662100
H -3.52581900 5.27501000-0.85431500
H -4.87778000 6.41866900-0.61546000
C -4.27392300 6.14648700-2.71478300
H -3.33701200 5.97308500 -3.28731100
H -4.75224100 7.06890100-3.10824300
C -5.74326700 4.81156600-4.87885000
C -7.06551400 4.68846900-5.36022600
H -7.90395500 4.62906700-4.64982800
C -7.31624300 4.63360000-6.74206900
H -8.35195100 4.52514900-7.10168400
C -4.93484800 4.84024700-7.18637300
H -4.09496400 4.88932000-7.89796300
C -6.25453700 4.71489200-7.65996400
H -6.45341000 4.67194200 -8.74254100
C -4.67602300 4.87532000-5.80828100
H -3.63535400 4.90170100 -5.44613600
C -6.91570100 4.96370600-2.21223800
C -7.55767900 6.22312700-2.21580300
H -7.10623500 7.07129400 -2.75497800
C -8.77789500 6.39741900-1.54194900
```

H $\quad-9.27113600 \quad 7.38282500-1.54899500$
C -9.37300200 5.31524500-0.86339900
H $-10.32875605 .45456500-0.33351400$
C -8.73567100 $4.06283000-0.84743000$
H $-9.174389003 .21782400-0.29422600$
C -7.50697000 3.89047700-1.51044100
H -6.99046100 2.91667000-1.46718800

Calculated structure: $\left[1, \cdot \mathrm{PPh}_{2} \mathrm{Et}\right]^{+}$

Cu 0.000000000 .000000000 .00000000
$\mathrm{Cu} 0.027551000 .14294900-2.69374000$
$\mathrm{Cu}-0.00003000-2.60615000-2.86215900$
Cu 0.02749700-2.74909000-0.16842800
$\mathrm{Cu} 2.065969000 .66197300-1.43099800$
$\mathrm{Cu} 2.06594100-1.30301000-3.33611100$
Cu 2.06591100-3.26810200-1.43113400
$\mathrm{Cu} 2.06593100-1.303175000 .47397000$
Cu 4.10437400 0.14278800-0.16827700
$\mathrm{Cu} 4.131922000 .00009300-2.86203300$
$\mathrm{Cu} 4.10434300-2.74902300-2.69382100$
$\mathrm{Cu} 4.13187500-2.60632900-0.00007400$
S -1.15819300-1.30304800-1.43110200
S 2.047468000 .882681000 .79783900
S 2.08449000 0.88287800-3.65980100
S 2.04739600-3.48887400-3.65995200
S 2.08442700-3.48907000 0.79766300
S 5.29009600-1.30313300-1.43104100
P - $1.30739300 \quad 0.70734100 \quad 1.72530800$
P - 1.12541200 2.08083000-3.01709300
P -1.30745900 -3.31350500-4.58744700
P -1.12554600-4.68689100 0.15497100
P $5.25745000 \quad 2.08057400 \quad 0.15519400$
P 5.43928900 0.70753600-4.58728800
P 5.25731400-4.68684200-3.01736700
P 5.43925000-3.31381300 1.72519600
C -1.350122002 .528208001 .91797600
C $-2.411585003 .29546700 \quad 1.38412100$
H $\quad-3.28372200 \quad 2.79823500 \quad 0.93729300$
C $-2.351578004 .69823400 \quad 1.39378400$
H $\quad-3.19044700 \quad 5.27389500 \quad 0.97218900$
C $-1.225019005 .35799200 \quad 1.91641900$
H $-1.17692500 \quad 6.45815300 \quad 1.91899200$
C -0.154430004 .601624002 .42651200
H $\quad 0.73764500 \quad 5.10803200 \quad 2.82804300$
C -0.212464003 .198389002 .42885100
H $\quad 0.64537600 \quad 2.62465700 \quad 2.81028800$
C $-3.03454400 \quad 0.08959900 \quad 1.86488900$
C $-4.04957800 \quad 0.746431002 .59597100$
H $\quad-3.828201001 .683776003 .13005000$
C $-5.34892300 \quad 0.213041002 .63349100$

H	-6.13646400 0.735151003 .19974300
C	-5.64619000-0.98229500 1.95106800
H	-6.66949600-1.38938600 1.97218400
C	-4.63202700-1.65650800 1.24771300
H	-4.85154800-2.59022100 0.70591700
C	-3.33166200-1.12738500 1.21031700
H	-2.53788100-1.64658900 0.65181800
C	-0.49274400 0.040884003 .26589700
H	0.536924000 .457855003 .25581600
H	$-1.025909000 .429843004 .15930600$
C	-0.43092600-1.48979100 3.23364800
H	-1.43537500-1.96032000 3.23483100
H	0.10186400-1.83621900 2.32092700
H	0.12838300-1.88634500 4.10438800
H	$4.00325500-0.720196004 .10423700$
C	$4.56257900-1.116709003 .23348900$
H	$5.56697700-0.646072003 .23461800$
H	$4.02970300-0.770358002 .32078800$
C	$4.62454900-2.647378003 .26576600$
H	$3.59491700-3.064441003 .25566100$
H	$5.15771900-3.036275004 .15919900$
C	$5.48193700-5.134683001 .91785300$
C	$4.34427100-5.804897002 .42866400$
H	$3.48639300-5.231194002 .81005800$
C	$4.28629500-7.208134002 .42635700$
H	$3.39420700-7.714565002 .82782800$
C	$5.35696500-7.964474001 .91638800$
H	$5.30892300-9.064637001 .91900100$
C	$6.48355200-7.304685001 .39385200$
H	$7.32249900-7.880322000 .97237900$
C	$6.54349200-5.901914001 .38413800$
H	$7.41566800-5.404653000 .93741400$
C	$7.16638500-2.696087001 .86487200$
C	8.18142600-3.35298100 2.59588100
H	$7.96010900-4.290479003 .12971900$
C	$9.48072100-2.819482002 .63359400$
H	$10.2682720-3.341653003 .19977400$
C	$9.77791700-1.623958001 .95146700$
H	$10.8011700-1.216746001 .97277800$
C	$8.76373700-0.949695001 .24818100$
H	$8.98319700-0.015827000 .70662700$
C	$7.46343200-1.478944001 .21056500$
H	$6.66965100-0.959707000 .65209300$
C	-1.53096900 2.17288600-4.80600000
C	-2.84283700 1.93449000-5.27185800
H	-3.66801900 1.81765800-4.55374200
C	-3.09951300 1.84191200-6.65004400
H	-4.12559100 1.64611200-6.99877900
C	$-2.054556001 .99850300-7.57735100$
H	-2.25793300 1.92741700-8.65728200
	-0.74632500 2.24016500-7.11857300

```
H 0.07854600 2.35648800-7.83938000
C -0.47961200 2.31543700-5.74307300
H 0.55645800 2.44868400-5.39463300
C -2.72269600 2.39037900-2.15736300
C -3.34119300 3.66164500-2.17018600
H -2.85698000 4.50966100-2.67971400
C -4.58393900 3.84766100-1.54304200
H -5.05998400 4.84094800-1.55739200
C -5.22421100 2.76733000-0.90415000
H -6.19840500 2.91681100-0.41268100
C -4.61088500 1.50311500-0.88182400
H -5.08689300 0.65844600-0.36008600
C -3.36078300 1.31713600-1.49901600
H -2.86873900 0.33235600-1.45532800
C -0.06286200 3.56133200-2.65276000
H 0.88582500 3.36389300-3.19674600
H -0.52359900 4.47276600 -3.08914700
C 0.20080400 3.69235200-1.15048400
H -0.72334100 3.91921300-0.58523500
H 0.61746000 2.74964200-0.73616100
H 0.93459200 4.49703300-0.94344500
H 3.19729400 4.49705100-1.91795600
C 3.93109500 3.69233800-1.71108600
H 4.85518300 3.91923500-2.27641500
H 3.51438500 2.74967400-2.12546400
C 4.19490700 3.56115600-0.20884600
H 3.24626400 3.36370700 0.33521200
H 4.65571900 4.47252700 0.22759500
C 5.66323400 2.17240100 1.94407000
C 6.97514300 1.93396100 2.40978200
H 7.80025900 1.81718000 1.69157800
C 7.23194400 1.84127600 3.78794000
H 8.25805000 1.64543300 4.13656700
C 6.18707800 1.99781800 4.71535700
H 6.39056100 1.92665500 5.79526400
C 4.87880500 2.23952700 4.25672200
H 4.05400400 2.35580500 4.97761600
C 4.61196400 2.31488200 2.88125400
H 3.57586200 2.44813500 2.53291000
C 6.85465400 2.39014600-0.70463600
C 7.47312800 3.66142400-0.69186200
H 6.98888400 4.50946300-0.18240400
C 8.71588900 3.84743200-1.31897600
H 9.19189800 4.84073700-1.30468800
C 9.35620900 2.76707000-1.95776900
H 10.3304270 2.91653200-2.44919600
C 8.74290300 1.50284700-1.98004600
H 9.21897900 0.65815600-2.50168100
C 7.49277600 1.31686900-1.36289300
H 7.00072100 0.33209000-1.40657600
C -1.35017200 -5.13435900-4.78015400
```

H	-3.28388300-5.40427200-3.79966300
C	$-2.35176500-7.30433200-4.25599300$
H	-3.19069700-7.87994900-3.83446400
C	-1.22517400-7.96414400-4.77849500
H	-1.17711900-9.06430600-4.78103100
C	$-0.15451600-7.20782800-5.28852600$
H	0.73757600-7.71428000-5.68996400
C	-0.21249900-5.80459200-5.29092300
H	0.64538700-5.23090300-5.67232400
C	-3.03460700-2.69579600-4.72712100
C	-3.33169200-1.47863000-4.07288000
H	-2.53790800-0.95931200-3.51449500
C	-4.63203600-0.94947200-4.11043400
H	-4.85152900-0.01560500-3.56888700
C	$-5.64621400-1.62383200-4.81363000$
H	-6.66949700-1.21669100-4.83489400
C	-5.34898000-2.81937000-5.49571300
H	-6.13653100-3.34162400-6.06181500
C	-4.04965200-3.35279500-5.45803000
H	-3.82831800-4.29033700-5.99178600
C	-0.49274900-2.64700300-6.12799000
H	0.53684400-3.06416600-6.11794500
H	-1.02598000-3.03578500-7.02143600
C	-0.43062700-1.11634500-6.09559500
H	0.10230600-0.77012000-5.18288000
H	$-1.43497700-0.64560900-6.09666200$
H	0.12871500-0.71982000-6.96632600
H	$4.00342100-1.88605200-6.96644400$
C	4.56275100-1.48955400-6.09569200
H	$4.02993900-1.83600200-5.18299200$
H	$5.56718100-1.96012200-6.09689600$
C	4.62460800 0.04112000-6.12788200
H	3.59494800 0.45811300-6.11775800
H	5.15775500 0.43010200-7.02129300
C	$5.481951002 .52841500-4.77987900$
C	$6.543370003 .29566900-4.24593000$
H	$7.415497002 .79842700-3.79909300$
C	$6.483344004 .69843700-4.25553800$
H	$7.322184005 .27409200-3.83387800$
C	$5.356803005 .35819900-4.77820600$
H	$5.308690006 .45835900-4.78072700$
C	$4.286261004 .60183400-5.28840500$
H	$3.394206005 .10824400-5.68997700$
C	$4.344319003 .19860100-5.29080700$
H	$3.486529002 .62487600-5.67236300$
C	$7.166419000 .08979600-4.72692600$
C	$8.181437000 .74657900-5.45806800$
H	$7.960084001 .68395300-5.99210600$
C	$9.480752000 .21311800-5.49566400$
	10.2682870 0.73519300-6.06195500

H	$10.8012670-1.38940700-4.83447400$
C	$8.76384400-1.65638400-4.10982400$
H	$8.98335500-2.59010300-3.56803500$
C	$7.46351300-1.12719000-4.07234000$
H	6.66975700-1.64631500-3.51372600
C	-1.53129100-4.77891200 1.94384400
C	-0.47999700-4.92147400 2.88099000
H	002.53261100
C	-0.74681200-4.84627100 4.25647200
H	0.07800800-4.96260300 4.97733600
C	-2.05508400-4.60465000 4.71515800
H	-2.25855000-4.53361400 5.79507700
C	-3.09997400-4.44804000 3.78777900
H	-4.12608000-4.25227900 4.13645000
C	-2.84319800-4.54056900 2.40960600
H	-3.66833000-4.42373800 1.69143100
C	$-2.72273300-4.99646400-0.70489500$
C	-3.36076100-3.92324400-1.36334000
H	-2.86870500-2.93846600-1.40702900
C	-4.61078400-4.10928500-1.98068500
H	-5.08678400-3.26464300-2.50247200
C	$-5.22408300-5.37351000-1.95841000$
H	-6.19821500-5.52301800-2.44999000
C	$-4.58386400-6.45381500-1.31941500$
H	$-5.05986300-7.44712400-1.30512900$
C	$-3.34121100-6.26774100-0.69210700$
H	-2.85703300-7.11573800-0.18251700
C	-0.06295800-6.16739700-0.20926000
H	0.88564800-5.97004900 0.33490100
H	-0.52379900-7.07884800 0.22698600
C	0.20095300-6.29829800-1.71150400
H	-0.72311300-6.52501800-2.27693700
H	0.61775900-5.35558000-2.12566200
H	0.93471400-7.10301800-1.91849000
H	$3.19687500-7.10312200-0.94425800$
C	$3.93068200-6.29841300-1.15111800$
H	$3.51388500-5.35571700-0.73690200$
H	$4.85469900-6.52522200-0.58564300$
C	$4.19469900-6.16737800-2.65333000$
H	3.24612900-5.96996600-3.19753000
H	$4.65554600-7.07879800-3.08963100$
C	$5.66309000-4.77870300-4.80624600$
C	$6.97500800-4.54034600-5.27197000$
H	$7.80013600-4.42361100-4.55377400$
C	$7.23180500-4.44768600-6.65013100$
H	8.25792000-4.25190800-6.99876700
C	$4.87864200-4.84581400-7.11889400$
H	$4.05382800-4.96205600-7.83978000$
C	6.18692400-4.60417800-7.57754000
	$6.39040400-4.53303900-8.65744900$

```
C 4.61180800-4.92114200-5.74342300
H 3.57570200-5.05433600-5.39507000
C 6.85448600-4.99645900-2.15750900
C 7.47298100-6.26772600-2.17034100
H 6.98880900-7.11572100-2.67993900
C 8.71565600-6.45378400-1.54307200
H 9.19168000-7.44708100-1.55739900
C 9.35586700-5.37348400-0.90406300
H 10.3300160-5.52298700-0.41251300
C 8.74254200-4.10927000-0.88173800
H 9.21853100-3.26463200-0.35993700
C 7.49250200-3.92323800-1.49905400
H 7.00042200-2.93847200-1.45532500
```

Calculated structure: $\left[1{ }^{\prime} \cdot \mathbf{P P h}_{2} \mathbf{E t}\right]^{\mathbf{2 +}}$
Cu 0.000000000 .000000000 .00000000
$\mathrm{Cu}-0.04714800-0.13085600-2.68907300$
$\mathrm{Cu}-0.000036002 .61056500-2.86405100$
$\mathrm{Cu}-0.047098002 .74140400-0.17496700$
$\mathrm{Cu}-2.07062500-0.75498100-1.43216600$
$\mathrm{Cu}-2.07065200$ 1.30546000-3.27248000
$\mathrm{Cu}-2.070624003 .36547200-1.43176500$
$\mathrm{Cu}-2.070609001 .305099000 .40850500$
$\mathrm{Cu}-4.09411700-0.13109200-0.17515500$
$\mathrm{Cu}-4.141256000 .00026100-2.86420000$
$\mathrm{Cu}-4.09415200$ 2.74164300-2.68872900
$\mathrm{Cu}-4.141205002 .610311000 .00034200$
S 1.16136000 1.30529200-1.43207100
S -2.04145900 -0.86753100 0.80362900
S -2.09981700-0.86711800-3.66800000
S -2.04155200 3.47805800-3.66757600
S -2.09969900 3.477627000 .80408800
S -5.30258000 1.30531500-1.43189900
P 1.31668300-0.75358700 1.69990400
P 1.06964400-2.09335500-2.96839400
P 1.31656000 3.36413300-4.56401900
P 1.069630004 .703965000 .10424900
P -5.21096500 -2.09359200 0.10388600
P -5.45798500 -0.75307500-4.56418700
P -5.21099600 4.70417900-2.96772900
P -5.45788300 $3.36355200 \quad 1.70041000$
C 1.34442300-2.57487000 1.87618300
C 2.41015200-3.34367800 1.35457700
H 3.28629200-2.84929100 0.91279300
C $2.35209400-4.74652800 \quad 1.37949900$
H 3.19500900-5.32661400 0.97290900
C 1.22456700-5.40190500 1.90519600
H 1.18074800-6.50189500 1.92391800
C $0.14972400-4.642889002 .40275200$
H -0.73989600 -5.14778300 2.81101400

```
C 0.20480400-3.23975100 2.38902900
H -0.65290300-2.66399800 2.76788000
C 3.04349300-0.13945500 1.82859200
C 4.04789800-0.80132000 2.57031700
H 3.81868000-1.73614800 3.10524200
C 5.34896600-0.27317800 2.61947200
H 6.12825300-0.79754400 3.19444200
C 5.65814500 0.91965800 1.93824200
H 6.68300200 1.32161900 1.96897500
C 4.65353500 1.59872300 1.22571500
H 4.88357700 2.53195600 0.68717700
C 3.35076100 1.07663000 1.17824200
H 2.56417100 1.60364200 0.61790000
C 0.50912500-0.08684400 3.24356500
H -0.51046000-0.52633400 3.26416000
H 1.07098600-0.45745100 4.12699100
C 0.41850100 1.44179200 3.20115500
H 1.41432500 1.92865100 3.16747400
H -0.14808600 1.77229400 2.30312100
H -0.11896900 1.83515600 4.08667000
H -4.02224700 0.77434600 4.08670600
C -4.55978100 1.16786600 3.20130000
H -5.55563900 0.68107400 3.16763200
H -3.99327900 0.83744100 2.30318000
C -4.65028400 2.69649500 3.24393000
H -3.63065900 3.13589800 3.26455000
H -5.21207600 3.06700900 4.12743500
C -5.48565100 5.18479300 1.87701300
C -4.34606100 5.84961200 2.39000400
H -3.48836900 5.27381300 2.76882200
C -4.29101300 7.25275000 2.40396000
H -3.40142600 7.75759900 2.81235300
C -5.36585900 8.01182300 1.90650200
H -5.32205700 9.11181100 1.92539300
C -6.49336100 7.35650700 1.38066600
H -7.33627800 7.93664300 0.97415100
C -6.55138100 5.95366400 1.35549900
H -7.42751000 5.45932900 0.91363400
C -7.18465700 2.74935400 1.82902100
C -8.18914300 3.41124700 2.57061300
H -7.95999500 4.34609800 3.10552000
C -9.49019600 2.88306100 2.61970400
H -10.2695450 3.40743900 3.19458000
C -9.79927000 1.69015200 1.93856000
H -10.8241130 1.28815100 1.96924900
C -8.79457900 1.01105400 1.22618700
H -9.02454000 0.07774700 0.68775300
C -7.49181800 1.53319700 1.17874700
H -6.70515100 1.00614900 0.61853400
C 1.46811200-2.12969100-4.75975000
C 2.77333700-1.83022900-5.20945100
```

C	$3.03917900-1.72083700-6.58426800$
H	$4.05936000-1.48198700-6.92240800$
C	$2.01025000-1.91886300-7.52167200$
H	$2.22134800-1.83713200-8.59917300$
C	0.70909000-2.22023600-7.07813000
H	-0.10024000-2.37525500-7.80883200
C	0.43204500-2.31454300-5.70577900
H	-0.59845200-2.50796100-5.37049400
C	$2.67038000-2.40134400-2.12365200$
C	3.27432900-3.67989800-2.15419000
H	$2.76862600-4.52533000-2.64628300$
C	$4.53510700-3.87619200-1.56815600$
H	$5.00098500-4.87364200-1.59750700$
C	$5.20674500-2.80091200-0.95360500$
H	$6.19578000-2.95906200-0.49618400$
C	$4.60768500-1.53025900-0.91514300$
H	$5.11032300-0.68899600-0.41349700$
C	$3.34086500-1.33214800-1.49263200$
H	$2.86576000-0.34063300-1.44131000$
C	0.00363500-3.57254400-2.62630900
H	-0.95093600-3.36208000-3.15397100
H	0.45969300-4.46910900-3.09655900
C	-0.23432900-3.75175200-1.12513700
H	0.69900200-4.00130500-0.58567900
H	-0.63847200-2.82325100-0.66761400
H	-0.96540900-4.56224500-0.93386300
H	-3.17570100-4.56207200-1.93090500
C	-3.90682000-3.75163600-1.73953500
H	-4.84009200-4.00108700-2.27914400
H	-3.50265500-2.82302700-2.19682400
C	-4.14494000-3.57274100-0.23835100
H	-3.19042100-3.36242800 0.28946300
H	-4.60108800-4.46938400 0.23166100
C	-5.60960300-2.13025800 1.89521200
C	-6.91487600-1.83097200 2.34488300
H	-7.72777900-1.68530400 1.61853500
C	-7.18082300-1.72189600 3.71970500
H	-8.20104300-1.48318100 4.05782400
C	-6.15195500-1.92007300 4.65714300
H	-6.36313800-1.83859500 5.73464600
C	-4.85074300-2.22126800 4.21362900
H	-4.04145600-2.37639900 4.94435400
C	-4.57359500-2.31524800 2.84127900
H	-3.54305600-2.50850700 2.50602500
C	-6.81161000-2.40142800-0.74106700
C	-7.41563200-3.67994900-0.71083700
H	-6.91003800-4.52550100-0.21883700
C	-8.67630800-3.87608500-1.29714600
H	-9.14224100-4.87351700-1.26804500
	-9.34777200-2.80067800-1.91166300

H -10.3367390 -2.95870500 -2.36927300
C -8.74862700-1.53005600-1.94984300
H -9.25112600-0.68869700 -2.45146400
C -7.48190400-1.33210000-1.37207700
H -7.00668800 -0.34062900-1.42324900
C $1.344258005 .18541400-4.74032200$
C 2.40991100 5.95426500-4.21861400
H 3.28603500 5.45991500-3.77676500
C 2.35180300 7.35710900-4.24354600
H 3.19465500 7.93723100-3.83687600
C $1.224293008 .01244200-4.76934200$
H $1.18042500 \quad 9.11243100-4.78805100$
C $0.149522007 .25338700-5.26698800$
H $\quad-0.74007300 \quad 7.75824900-5.67534700$
C $0.204655005 .85025000-5.25325800$
H $-0.652988005 .27445800-5.63219800$
C 3.04337000 2.75000500-4.69273300
C $3.350636001 .53387600-4.04246300$
H $2.56400700 \quad 1.00676900-3.48225800$
C 4.65343200 1.01182700-4.08990600
H 4.88346800 0.07855100 -3.55144400
C 5.65806200 1.69098800-4.80230700
H $\quad 6.68293700 \quad 1.28906900-4.83300400$
C $5.34888700 \quad 2.88386300-5.48346800$
H 6.12818700 3.40827700-6.05837700
C $4.047801003 .41196500-5.43434800$
H $3.81857300 \quad 4.34678500-5.96927400$
C $0.508981002 .69733700-6.10766800$
H $-0.510642003 .13674400-6.12823500$
H $\quad 1.07079500 \quad 3.06800600-6.99109600$
C $0.418481001 .16869900-6.06529000$
H $-0.14803000 \quad 0.83812800-5.16723000$
H $\quad 1.41434000 \quad 0.68190700-6.03168000$
H $-0.11902400 \quad 0.77531400-6.95077500$
H $-4.02234000 \quad 1.83607300-6.95050900$
C $-4.559825001 .44257300-6.06506500$
H $\quad-3.993233001 .77292100-5.16697500$
H $\quad-5.55564500 \quad 1.92943700-6.03131100$
C -4.65046100-0.08605600-6.10773500
H -3.63087500-0.52554000 -6.12840400
H $\quad-5.21231300-0.45649800-6.99123600$
C -5.48567900-2.57433200 -4.74071800
C -6.55134900-3.34325700-4.21916000
H -7.42747900-2.84897100-3.77723800
С -6.49324600-4.74610300-4.24429600
H -7.33611700-5.32627400 -3.83773500
C -5.36573500-5.40136600-4.77016500
H -5.32188400-6.50135200-4.78906400
C -4.29095000-4.64223800-5.26768100
H -3.40134200-5.14704400-5.67608000
C -4.34607400-3.23910600-5.25374600

```
H -3.48841400-2.66327300 -5.63257700
C -7.18479200-0.13895900-4.69268800
C -8.18924200-0.80073000-5.43442700
H -7.96006400-1.73550000 -5.96947300
C -9.49031900-0.27259300 -5.48341700
H -10.2696420-0.79689800 -6.05839500
C -9.79945400 0.92015400-4.80201100
H -10.8243100 1.32212500 -4.83262800
C -8.79479600 1.59912100-4.08945600
H -9.02480400 2.53228500 -3.55078300
C -7.49201800 1.07703000-4.04213600
H -6.70540600 1.60394800 -3.48173300
C 1.46819500 4.74030200 1.89556600
C 0.43218000 4.92511700 2.84165700
H -0.59833800 5.11852900 2.50643000
C 0.70930500 4.83078000 4.21399100
H -0.09998500 4.98576100 4.94474400
C 2.01049400 4.52941500 4.65745000
H 2.22165400 4.44766000 5.73493700
C 3.03937500 4.33143200 3.71998300
H 4.05957900 4.09258300 4.05805700
C 2.77345400 4.44085600 2.34518500
H 3.58636000 4.29534300 1.61881800
C 2.67031500 5.01188900-0.74066200
C 3.34072800 3.94268300-1.37173100
H 2.86567600 2.95113700-1.42285700
C 4.60741600 4.14079100-1.94949300
H 5.10993500 3.29951000-2.45124400
C 5.20643300 5.41147300-1.91123800
H 6.19535800 5.56963600-2.36889300
C 4.53489500 6.48676200-1.29658500
H 5.00074700 7.48422800-1.26737900
C 3.27423100 6.29046700-0.71030800
H 2.76860400 7.13590400-0.21813900
C 0.00359600 6.18312600-0.23781200
H -0.95094600 5.97263000 0.28989100
H 0.45963500 7.07972300 0.23239900
C -0.23445900 6.36232000-1.73897500
H 0.69880900 6.61203800-2.27846000
H -0.63846700 5.43376500-2.19649800
H -0.96568400 7.17269800-1.93019500
H -3.17546900 7.17240200-0.93288900
C -3.90668800 6.36205300-1.12424200
H -3.50257800 5.43337700-0.66704500
H -4.83988500 6.61157400-0.58454900
C -4.14495300 6.18328100-2.62542600
H -3.19047800 5.97295100 -3.15331400
H -4.60107000 7.08000200 -3.09532800
C -5.60958100 4.74085000-4.75904300
C -6.91487000 4.44166700 -5.20873300
H -7.72780500 4.29610800 -4.48240300
```

C	-7.18079000	4.33255000	-6.58355700
H	-8.20102300	4.09390500	-6.92168700
C	-4.85064900	4.83168500	-7.07744400
H	-4.04132900	4.98670200	-7.80815600
C	-6.15187700	4.53058600	-7.52097700
H	-6.36304000	4.44908000	-8.59848200
C	-4.57352900	4.92570600	-5.70508900
H	-3.54298400	5.11888600	-5.36980600
C	-6.81167200	5.01197900	-2.12275500
C	-7.41558600	6.29056400	-2.15290800
H	-6.90997900	7.13606500	-2.64498700
C	-8.67624200	6.48677800	-1.56658600
H	-9.14209000	7.48425100	-1.59563800
C	-9.34776800	5.41140700	-0.95206400
H	-10.3366740	5.56951600	-0.49434900
C	-8.74875400	4.14072000	-0.91400000
H	-9.25126900	3.29937200	-0.41235700
C	-7.48207900	3.94268500	-1.49182300
H	-7.00702800	2.95113400	-1.44082100

References

(1) Yang, X.-X.; Issac, I.; Lebedkin, S.; Kühn, M.; Weigend, F.; Fenske, D.; Fuhr, O.; Eichhöfer, A. RedLuminescent Biphosphine Stabilized ' $\mathrm{Cu}_{12} \mathrm{~S}_{6}$ ' Cluster Molecules. Chem. Commun. 2014, 50 (75), 11043-11045. https://doi.org/10.1039/C4CC04702H.
(2) Eichhöfer, A.; Buth, G.; Lebedkin, S.; Kühn, M.; Weigend, F. Luminescence in Phosphine-Stabilized Copper Chalcogenide Cluster Molecules-A Comparative Study. Inorg. Chem. 2015, 54 (19), 94139422. https://doi.org/10.1021/acs.inorgchem.5b01146.
(3) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29 (9), 2176-2179. https://doi.org/10.1021/om100106e.
(4) Breuer, R.; Schmittel, M. 1,1'-Biferrocenylenes-The More Redox Stable Ferrocenes! New Derivatives, Corrected NMR Assignments, Redox Behavior, and Spectroelectrochemistry. Organometallics 2012, 31 (5), 1870-1878. https://doi.org/10.1021/om201215w.
(5) Metz, D. J.; Glines, A. Density, Viscosity, and Dielectric Constant of Tetrahydrofuran between -78 and 30.Degree. J. Phys. Chem. 1967, 71 (4), 1158-1158. https://doi.org/10.1021/j100863a067.
(6) Macchioni, A.; Ciancaleoni, G.; Zuccaccia, C.; Zuccaccia, D. Determining Accurate Molecular Sizes in Solution through NMR Diffusion Spectroscopy. Chem. Soc. Rev. 2008, 37 (3), 479-489. https://doi.org/10.1039/B615067P.
(7) Gavezzotti, A. The Calculation of Molecular Volumes and the Use of Volume Analysis in the Investigation of Structured Media and of Solid-State Organic Reactivity. J. Am. Chem. Soc. 1983, 105 (16), 5220-5225. https://doi.org/10.1021/ja00354a007.
(8) Dehnen, S.; Schäfer, A.; Fenske, D.; Ahlrichs, R. New Sulfur- and Selenium-Bridged Copper Clusters; Ab Initio Calculations on $\left[\mathrm{Cu}_{2 \mathrm{n}} \mathrm{Se}_{\mathrm{n}}\left(\mathrm{PH}_{3}\right)_{\mathrm{m}}\right]$ Clusters. Angew. Chem. Int. Ed. Engl. 1994, 33 (7), 746-749. https://doi.org/10.1002/anie. 199407461.
(9) Liaw, B.-J.; Lobana, T. S.; Lin, Y.-W.; Wang, J.-C.; Liu, C. W. Versatility of Dithiophosphates in the Syntheses of Copper(I) Complexes with Bis(Diphenylphosphino)Alkanes: Abstraction of Chloride from Dichloromethane. Inorg. Chem. 2005, 44 (26), 9921-9929. https://doi.org/10.1021/ic051166+.
(10) Yu, Y.-Z.; Bai, J.; Peng, J.-M.; Yao, J.-S.; Zhuo, C.-X. Modular Access to Meta-Substituted Benzenes via Mo-Catalyzed Intermolecular Deoxygenative Benzene Formation. J. Am. Chem. Soc. 2023, 145 (16), 8781-8787. https://doi.org/10.1021/jacs.3c01330.
(11)Fargher, H. A.; Sherbow, T. J.; Haley, M. M.; Johnson, D. W.; Pluth, M. D. C-H...S Hydrogen Bonding Interactions. Chem. Soc. Rev. 2022, 51 (4), 1454-1469. https://doi.org/10.1039/D1CS00838B.
(12) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297-3305. https://doi.org/10.1039/B508541A.
(13) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344.
(14) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456-1465. https://doi.org/10.1002/jcc.21759.

