< Electronic Supporting Information>

Modulated assembly and structural diversity of heterometallic

Sn-Ti oxo clusters from inorganic tin precursors

Hui-Fang Zhao,^a Fang-Fang Liu,^a Qing-Rong Ding,^a Di Wang,^a Jian Zhang,^a and Lei Zhang^{a,b*}

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. ^bInstitute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China. *E-mail: zhanglei3915@nankai.edu.cn.*

Content

1. Materials and instruments	S3
2. Synthesis	S3
3. Single-crystal X-ray diffraction	S5
4. Bond valence sum calculations	S8
5. Additional structural pictures	S9
6. Powder-XRD patterns	S11
7. The energy dispersive X-ray spectroscopy (EDS) spectra	S12
8. Thermogravimetrical analysis (TG)	S14
9. IR spectra	S15
10. UV-Vis parameters	S16
11. ICP results	S17
12. Additional texts	S17
13. Electrochemical Measurements	S18
14. Faraday efficiency patterns	S19
15. Stability testing of compounds	S20
16. Rerference	S21

1. Materials and instruments

All the reagents and solvents employed are purchased commercially and used as received without further treatment. SnCl₂·2H₂O and SnCl₄·5H₂O were purchased from Energy Chemical, trimethylolpropane and di(trimethylolpropane) were purchased from Aladdin. Ti(OⁱPr)₄ was purchased from Adamas, while ethyl acetate, acetonitrile, 1,4dioxane, formic acid, acetic acid and propionic acid were bought from Sino pharm Chemical Reagent Beijing. Powder X-ray diffraction (PXRD) analyses data were mounted on a Rigaku Mini Flex II diffractometer using Cu Ka radiation (λ = 1.54056 Å) under ambient conditions. Fourier transform infrared (FT-IR) spectra were recorded with a Spectrum One FT-IR Spectrometer in the 400-4000 cm⁻¹ range. Thermal stabilities were investigated by a Mettler Toledo TGA/SDTA 851e analyzer in N2 atmosphere with a heating rate of 10 °C/min under N2 atmosphere. Elemental analyses were measured on a Vario MICRO Elemental Analyzer instrument. The UV-vis diffuse reflection data were recorded at room temperature using a powder sample with BaSO₄ as a standard (100% reflectance) on a PerkinElmer Lamda-950 UV spectrophotometer and scanned from 200 to 800 nm. The energy dispersive spectroscopy (EDS) analyses of single crystals were performed on a JEOL JSM6700F field-emission scanning electron microscope equipped with an Oxford INCA system. ESI-MS was carried out on Thermo Scientific Exactive Plus. Inductively coupled plasma (ICP) analyses for Sn and Ti were conducted on an Ultima2 spectrometer. X-ray photoelectron spectroscopy (XPS) analysis was carried out on ESCALAB Xi⁺ XPS system (Thermo Fisher Scientific) with Al Kα X-ray radiation (1486.6 eV). Routine ¹H NMR spectra were recorded on a Bruker AVANCE III (400 MHz for ¹H NMR). Gas chromatography (GC) was performed with an GC-2014C (SHIMADZU) gas chromatography system equipped with flame ionization detectors and a thermal conductivity detector (TCD). The liquid products were detected by CIC-D100 automatic range ion chromatograph.

2. Synthesis

Synthesis of TOC-51

SnCl₄·5H₂O (0.35 g, 1.0 mmol), trimethylolpropane (0.27 g, 2.0 mmol), 1,4-dioxane (4 ml) and 4 ml ethyl acetate were mixed together. Then Ti(OⁱPr)₄ (0.50 ml, 1.50 mmol) was added. The mixture were mixed and sealed in a 20 mL vial, and then transferred to a preheated oven at 80 °C and heated for 3 days. After Leave the vial at room temperature for 6 days, colorless crystals of **TOC-51** were obtained with a yield of ~45% based on Sn. Elemental analysis (%): Calcd for $C_{72}H_{142}Cl_{18}O_{50}Sn_6Ti_{10}$: C, 23.78; H, 3.94. Found: C, 23.8; H, 4.01.

Synthesis of TOC-52

SnCl₄·5H₂O (0.35g, 1.0 mmol), trimethylolpropane (0.27 g, 2.0 mmol), 1,4-dioxane (6 ml) and 1 ml propionic acid were mixed together. Then Ti(OⁱPr)₄ (0.50 ml, 1.50 mmol) was added. The mixture were mixed and sealed in a 20 mL vial, and then transferred to a preheated oven at 80 °C and heated for 3 days. After Leave the vial at room temperature for 6 days, colorless crystals of **TOC-52** were obtained with a yield of ~33% based on Sn. Elemental analysis (%): Calcd for $C_{74}H_{146}Cl_{18}O_{50}Sn_6Ti_{10}$: C, 24.25; H, 4.02. Found: C, 24.73; H, 4.03.

Synthesis of TOC-53

SnCl₄·5H₂O (0.35 g, 1.0 mmol), di(trimethylolpropane) (0.25 g, 1.0 mmol), acetonitrile (2 ml) and 4 ml ethyl acetate were mixed together. Then Ti(OⁱPr)₄ (0.50 ml, 1.50 mmol) was added. The mixture were mixed and sealed in a 20 mL vial, and then transferred to a preheated oven at 80 °C and heated for 5 days. After cooling to room temperature, colorless crystals of **TOC-53** were obtained with a yield of ~27% based on Sn. Elemental analysis (%): Calcd for C₁₄H₂₅Cl₃O₇SnTi: C, 29.08; H, 4.36. Found: C, 29.17; H, 4.36.

Synthesis of TOC-54

SnCl₄·5H₂O (0.35 g, 1.0 mmol), di(trimethylolpropane) (0.25 g, 1.0 mmol), acetonitrile (5 ml) and 2 ml propionic acid were mixed together. Then Ti(OⁱPr)₄ (0.50 ml, 1.50 mmol) was added. The mixture were mixed and sealed in a 20 mL vial, and then transferred to a preheated oven at 80 °C and heated for 5 days. After cooling to room temperature, colorless crystals of **TOC-54** were obtained with a yield of ~37% based on Sn. Elemental analysis (%): Calcd for $C_{15}H_{27}Cl_3O_7SnTi$: C, 30.42; H, 4.59. Found: C, 27.36; H, 4.34.

Synthesis of TOC-55

SnCl₄·5H₂O (0.35 g, 1.0 mmol), di(trimethylolpropane) (0.25 g, 1.0 mmol), acetonitrile (3 ml) and 3 ml 1,4-dioxane were mixed together. Then Ti(OⁱPr)₄ (0.50 ml, 1.50 mmol) was added. The mixture were mixed and sealed in a 20 mL vial, and then transferred to a preheated oven at 80 °C and heated for 5 days. After cooling to room temperature, colorless crystals of **TOC-55** were obtained with a yield of ~36% based on Sn. Elemental analysis (%): Calcd for $C_{24}H_{48}Cl_6O_{13}Sn_2Ti_2$: C, 26.43; H, 4.44. Found: C, 30.08; H, 5.10.

Synthesis of TOC-56

SnCl₄·5H₂O (0.35 g, 1.0 mmol), di(trimethylolpropane) (0.25 g, 1.0 mmol), acetonitrile (5 ml) and 50 μ L propionic acid were mixed together. Then Ti(OⁱPr)₄ (0.50 ml, 1.50 mmol) was added. The mixture were mixed and sealed in a 20 mL vial, and then transferred to a preheated oven at 80 °C and heated for 5 days. After cooling to room temperature, colorless crystals of **TOC-56** were obtained with a yield of ~65% based on Sn. Elemental analysis (%): Calcd for C₄₈H₉₀Cl₆O₂₆Sn₂Ti₆: C, 31.67; H, 4.98. Found: C, 28.69; H 4.93.

Synthesis of TOC-57

SnCl₂·2H₂O (0.34 g, 1.5 mmol), di(trimethylolpropane) (0.25g, 1.0 mmol), acetonitrile (5 ml) and 50 μ L acetic acid were mixed together. Then Ti(OⁱPr)₄ (0.50 ml, 1.50 mmol) was added. The mixture were mixed and sealed in a 20 mL vial, and then transferred to a preheated oven at 80 °C and heated for 5 days. After cooling to room temperature, yellow crystals of **TOC-57** were obtained with a yield of ~88% based on Sn. Elemental analysis (%): Calcd for C₉₆H₁₇₈Cl₁₄O₅₄Sn₆Ti₁₄: C, 28.29; H, 4.40. Found: C, 28.47; H, 4.52.

Synthesis of TOC-58

SnCl₂·2H₂O (0.34 g, 1.5 mmol), di(trimethylolpropane) (0.25 g, 1.0 mmol), acetonitrile (5 ml) and 50 μ L formic acid were mixed together. Then Ti(OⁱPr)₄ (0.50 ml, 1.50 mmol) was added. The mixture were mixed and sealed in a 20 mL vial, and then transferred to a preheated oven at 80 °C and heated for 5 days. After cooling to room temperature, red crystals of **TOC-58** were

obtained with a yield of \sim 35% based on Sn. Elemental analysis (%): Calcd for C₁₄₄H₂₆₄Cl₁₂O₈₂Sn₈Ti₂₀: C, 30.67; H, 4.72. Found: C, 27.18; H, 4.62.

3. Single-crystal X-ray diffraction

Single-crystal diffraction data for compounds were collected on Hybrid Pixel Array detector equipped with Ga-K α radiation (λ = 1.3405 Å). Using Olex2,[1] the structures were solved with the dual-direct methods using ShelxT and refined with the full-matrix least-squares technique based on F^2 using the *SHELXL*.[2-4] Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added theoretically. The obtained crystallographic data for compound summarized in Table S1–S4. The X-ray crystallographic coordinates for structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 2365528-2365535. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

Compound	TOC-51	TOC-52
Crystal formula	C72H142CI18O50Sn6Ti10	C74H146Cl18O50Sn6Ti10
Formula weight	3636.95	3665.14
Temperature/K	100.0(3)	293(2)
Crystal system	triclinic	monoclinic
Space group	<i>P</i> -1	P21/n
a/Å	12.9762(2)	15.60310(10)
b/Å	22.6922(3)	18.1016(2)
c/Å	26.2336(3)	29.8915(2)
α/°	111.5130(10)	90
β/°	96.0020(10)	96.5800(10)
γ/°	96.3570(10)	90
Volume/Å ³	7053.79(17)	8386.97(12)
Z	2	2
$\rho_{calc}g/cm^3$	1.712	1.451
µ/mm⁻¹	11.260	9.473
F(000)	3598.0	3632.0
Radiation	micro-focus metaljet (λ = 1.3405)	micro-focus metaljet (λ = 1.3405)
2Θ range for data collection/°	3.686 to 120.854	4.97 to 120.286
In day,	-15 ≤ h ≤ 16, -29 ≤ k ≤ 27, -33	-20 ≤ h ≤ 19, -22 ≤ k ≤ 22, -31 ≤ l ≤
index ranges	≤ ≤ 33	38
Reflections collected	101285	75852
Indonandant reflections	31498 [$R_{int} = 0.0480$, $R_{sigma} =$	18686 [$R_{int} = 0.0619, R_{sigma} =$
independent renections	0.0460]	0.0508]
Data/restraints/parameters	31498/4/1420	18686/0/738
Goodness-of-fit on F ²	1.049	1.033
Final R indexes [I>=2σ (I)]	$R_1 = 0.0437$, $_wR_2 = 0.1063$	$R_1 = 0.0584, \ _wR_2 = 0.1690$

 Table S1 Crystal data and structure refinement for TOC-51 and TOC-52.

Compound	TOC-53	TOC-54
Crystal formula	C14H25Cl3O7SnTi	C ₁₅ H ₂₇ Cl ₃ O ₇ SnTi
Formula weight	578.28	592.30
Temperature/K	100.00(10)	100.00(10)
Crystal system	monoclinic	triclinic
Space group	P21/c	<i>P</i> -1
a/Å	9.85680(10)	9.0964(2)
b/Å	16.8341(3)	9.3132(2)
c/Å	12.5136(2)	14.5943(3)
α/°	90	73.634(2)
β/°	92.6740(10)	89.391(2)
γ/°	90	67.044(2)
Volume/Å ³	2074.13(5)	1085.42(4)
Z	4	2
ρ _{calc} g/cm ³	1.852	1.812
µ/mm⁻¹	11.341	10.846
F(000)	1152.0	592.0
Radiation	micro-focus metaljet (λ = 1.3405)	micro-focus metaljet (λ = 1.3405)
2O range for data collection/°	7.658 to 120.342	5.522 to 119.932
	-12 ≤ h ≤ 12, -21 ≤ k ≤ 20, -8	-11 ≤ h ≤ 10, -12 ≤ k ≤ 11, -18 ≤ l ≤
Index ranges	≤ I ≤ 16	18
Reflections collected	17404	13333
	4619 [R _{int} = 0.0490, R _{sigma} =	4791 [R _{int} = 0.0310, R _{sigma} =
independent reflections	0.0417]	0.0286]
Data/restraints/parameters	4619/0/238	4791/0/247
Goodness-of-fit on F ²	1.077	1.043
Final R indexes [I>=2σ (I)]	$R_1 = 0.0377$, $_wR_2 = 0.1028$	$R_1 = 0.0241$, $_wR_2 = 0.0612$
Final R indexes [all data]	$R_1 = 0.0416$, $_wR_2 = 0.1051$	$R_1 = 0.0247, \ _wR_2 = 0.0616$
Largest diff. peak/hole / e Å ⁻³	1.36/-1.56	0.92/-0.90

 Table S2 Crystal data and structure refinement for TOC-53 and TOC-54.

Table S3 Crystal data and structure refinement for TOC-55 and TOC-56.

Compound	TOC-55	TOC-56
Crystal formula	$C_{24}H_{48}CI_6O_{13}Sn_2Ti_2$	$C_{48}H_{88}CI_6O_{26}Sn_2Ti_6$
Formula weight	1090.50	1820.55
Temperature/K	100.00(10)	100.0(2)
Crystal system	monoclinic	triclinic
Space group	Cc	<i>P</i> -1
a/Å	8.98520(10)	12.3168(4)

b/Å	18.3443(2)	14.0058(4)
c/Å	25.5115(2)	15.4344(3)
α/°	90	110.064(2)
β/°	95.5520(10)	92.418(2)
γ/°	90	112.772(3)
Volume/Å ³	4185.26(7)	2258.45(12)
Z	4	1
ρ _{calc} g/cm ³	1.731	1.337
µ/mm ⁻¹	11.200	7.285
F(000)	2168.0	918.0
Radiation	micro-focus metaljet (λ = 1.3405)	micro-focus metaljet (λ = 1.3405)
2Θ range for data collection/°	6.052 to 120.164	6.462 to 120.328
Index ranges	-5 ≤ h ≤ 11, -22 ≤ k ≤ 23, -32 ≤ l ≤ 32	-15 ≤ h ≤ 15, -18 ≤ k ≤ 16, -19 ≤ l ≤ 19
Reflections collected	15569	27705
Independent reflections	5471 [R _{int} = 0.0320, R _{sigma} = 0.0323]	9981 [R _{int} = 0.0727, R _{sigma} = 0.0659]
Data/restraints/parameters	5471/2/430	9981/1/401
Goodness-of-fit on F ²	1.048	1.077
Final R indexes [I>=2σ (I)]	R ₁ = 0.0333, wR ₂ = 0.0890	$R_1 = 0.0620, \ _wR_2 = 0.1759$
Final R indexes [all data]	$R_1 = 0.0337$, $_wR_2 = 0.0894$	$R_1 = 0.0687$, $_wR_2 = 0.1815$
Largest diff. peak/hole / e Å-3	1.17/-0.77	2.89/-1.90

Table S4 Crystal	data and structure	refinement for	TOC-57 and	d TOC-58.

Compound	TOC-57	TOC-58
Crystal formula	$C_{96}H_{178}CI_{14}O_{54}Sn_{6}Ti_{14}$	C144H264Cl12O82Sn8Ti20
Formula weight	4075.41	5640.46
Temperature/K	100.00(13)	100.00(17)
Crystal system	monoclinic	cubic
Space group	P21/c	I-43d
a/Å	15.2738(2)	41.7993(2)
b/Å	23.1167(2)	41.7993(2)
c/Å	23.1453(2)	41.7993(2)
α/°	90	90
β/°	106.9090(10)	90
γ/°	90	90
Volume/Å ³	7818.84(15)	73031.0(10)
Z	2	12
ρ _{calc} g/cm ³	1.731	1.539
µ/mm⁻¹	10.899	9.164
F(000)	4064.0	33936.0
Padiation	micro-focus metaljet (λ =	micro-focus metaljet (λ =
Radiation	1.3405)	1.3405)

4.804 to 120.398	4.502 to 120.446	
-18 ≤ h ≤ 19, -29 ≤ k ≤ 28, -29	$-37 \le h \le 54, -36 \le k \le 52, -50 \le I$	
≤ I ≤ 24	≤ 23	
67350	37310	
17394 [$R_{int} = 0.0651$, $R_{sigma} =$	12754 [$R_{int} = 0.0541$, $R_{sigma} =$	
0.0501]	0.0535]	
17394/65/847	12754/60/606	
1.054	1.045	
$R_1 = 0.0638$, $_wR_2 = 0.1778$	$R_1 = 0.0936$, $_wR_2 = 0.2343$	
$R_1 = 0.0750, \ _wR_2 = 0.1872$	$R_1 = 0.1229$, $_wR_2 = 0.2620$	
2.87/-3.49	1.67/-1.20	
	$\begin{array}{l} 4.804 \mbox{ to } 120.398 \\ -18 \leq h \leq 19, \ -29 \leq k \leq 28, \ -29 \\ \leq l \leq 24 \\ 67350 \\ 17394 \ [R_{int} = 0.0651, \ R_{sigma} = \\ 0.0501] \\ 17394/65/847 \\ 1.054 \\ R_1 = 0.0638, \ wR_2 = 0.1778 \\ R_1 = 0.0750, \ wR_2 = 0.1872 \\ 2.87/-3.49 \end{array}$	

4. Bond valence sum calculations

Sn1	2.093		
Sn1	Cl1	d=2.5079(19)	0.766
Sn1	Cl6	d=2.5174(18)	0.748
Sn1	027	d=2.142(4)	0.579
Sn2	2.314		
Sn2	CI5	d=2.415(3)	0.987
Sn2	Cl3	d=2.439(3)	0.925
Sn2	O26	d=2.277(4)	0.402
Sn3	4.085		
Sn3	Cl4	d=2.379(2)	0.759
Sn3	CI7	d=2.3945(16)	0.726
Sn3	Cl2	d=2.3768(19)	0.759
Sn3	O5	d=2.052(4)	0.672
Sn3	O21	d=2.098(4)	0.591
Sn3	011	d=2.109(5)	0.578

Table S5 BVS calculation of Sn atom in TOC-57.

Table S6 BVS calculation of Sn atom in TOC-58.

Sn6	4.151		
Sn6	CI9	d=2.415(5)	0.687
Sn6	CI10	d=2.384(6)	0.747
Sn6	Cl12	d=2.382(6)	0.749
Sn6	O71	d=2.040(15)	0.696
Sn6	O76	d=2.068(15)	0.644
Sn6	O80	d=2.077(15)	0.628
Sn8	2.161		
Sn8	O441	d=2.315(12)	0.364
Sn8	O481	d=2.334(14)	0.344
Sn8	O56	d=2.320(13)	0.357
1		1	

Sn8	O63	d=2.212(13)	0.478
Sn8	O67	d=2.118(14)	0.618

5. Additional structural pictures

Figure S1 The cluster structure (a), and packing mode (b) of **TOC-53**. Color codes: dark red Sn; green Ti; blue Cl; gray C; red O. H atoms are omitted for clarity.

Figure S2 The cluster structure (a), and packing mode (b) of **TOC-54**. Color codes: dark red Sn; green Ti; blue Cl; gray C; red O. H atoms are omitted for clarity.

Figure S3 The cluster structure (a), and packing mode (b) of **TOC-55**. Color codes: dark red Sn; green Ti; blue Cl; gray C; red O. H atoms are omitted for clarity.

Figure S4 The cluster structure (a), and packing mode (b) of **TOC-56**. Color codes: dark red Sn; green Ti; blue Cl; gray C; red O. H atoms are omitted for clarity.

Figure S5 The asymmetric unit (a) and packing mode (b) of **TOC-58**. Color codes: dark red Sn; green Ti; blue Cl; gray C; red O. H atoms are omitted for clarity.

Figure S6 The chelation modes of di(trimethylolpropane) in TOC-58.

Figure S7 Space-filling model of the structures of **TOC-51** (a), **TOC-57** (b) and **TOC-58** (c), highlighting the exposed Sn atoms active sites; Color codes: dark red Sn; green Ti; blue Cl; gray C and O; white H.

6. Powder-XRD patterns

Figure S8 Simulated and experimental PXRD patterns of TOC-51 (a), TOC-52 (b), TOC-53 (c) and TOC-54 (d).

Figure S9 Simulated and experimental PXRD patterns of TOC-55 (a), TOC-56 (b), TOC-57 (c) and TOC-58 (d).

7. The energy dispersive X-ray spectroscopy (EDS) spectra

Figure S10 The EDS spectrum of TOC-51.

Lsec: 6.9 0 Cnts 0.000 keV Det: Octane Plus Det

Figure S11 The EDS spectrum of TOC-52.

Figure S12 The EDS spectrum of TOC-53.

Figure S13 The EDS spectrum of TOC-54.

Figure S14 The EDS spectrum of TOC-55.

Figure S15 The EDS spectrum of TOC-56.

Figure S16 The EDS spectrum of TOC-57.

Figure S17 The EDS spectrum of TOC-58.

8. Thermogravimetrical analysis (TG)

Figure S18 TG curve of TOC-51 (a), TOC-52 (b), TOC-53 (c) and TOC-54 (d) in N2 atmosphere.

Figure S19 TG curve of TOC-55 (a), TOC-56 (b), TOC-57 (c) and TOC-58 (d) in N_2 atmosphere.

9. IR spectra

Figure S21 FT-IR spectrum of TOC-55 (a), TOC-56 (b), TOC-57 (c) and TOC-58 (d).

10. UV-Vis parameters

Figure S22 UV-vis diffuse reflectance spectrum of TOC-51 (a), TOC-52 (b), TOC-53 (c) and TOC-54 (d).

Figure S23 UV-vis diffuse reflectance spectrum of TOC-55 (a), TOC-56 (b), TOC-57 (c) and TOC-58 (d).

11. ICP results

Compound	Found Sn (%)	Found Ti (%)	Found	Calculated
TOC-51	18.45	12.46	Sn : Ti = 6 : 10.05	Sn : Ti = 6 : 10
TOC-52	15.28	10.86	Sn : Ti = 6 : 10.57	Sn : Ti = 6 : 10
TOC-53	16.25	8.28	Sn : Ti = 1 : 1.26	Sn : Ti = 1 : 1
TOC-54	17.37	7.13	Sn : Ti = 1 : 1.02	Sn : Ti = 1 : 1
TOC-55	15.72	7.79	Sn : Ti = 2 : 2.46	Sn : Ti = 2 : 2
TOC-56	11.11	14.32	Sn : Ti = 2 : 6.39	Sn : Ti = 2 : 6
TOC-57	17.56	16.07	Sn : Ti = 6 : 13.62	Sn : Ti = 6 : 14
TOC-58	14.91	14.91	Sn : Ti = 8 : 20.09	Sn : Ti = 8 : 20

Table S7 The summary of ICP results

12. Additional texts

Figure S24 (a) and (b) Ti 2p XPS signals of TOC-57 and TOC-58.

Figure S25 ¹H NMR spectrum of the KHCO₃ catholyte after 1200 s of CO₂ reduction on TOC-51, TOC-57 and TOC-58 derived electrodes, E(RHE) = -1.0 V.

13. Electrochemical Measurements

Electrochemical experiments were performed on a CHI 760e electrochemical workstation (Chenhua, Shanghai, China) using a gas-tight two-compartment electrochemical cell with a Nafion-117 proton exchange membrane as the separator. Each compartment contained 20 mL of 0.5 M KHCO₃ electrolyte, and the electrolyte was presaturated with high-purity N₂ or CO₂. The platinum net (1.0 ×1.0 cm²) electrode and the Ag/AgCl electrode (the saturated KCl filling solution) were used as counter and reference electrode, respectively. The reference electrode potentials were converted to the value versus RHE by the equation: E (vs. RHE) = E (vs. Ag/AgCl) + 0.197 V + 0.0591 V × pH. The working electrode was prepared by pipetting the 50 uL of sample ink onto a carbon paper electrode (1×1 cm²) with a loading of 0.53 mg/cm². Typically, 5.3 mg of sample was dispersed into H₂O/ethanol (370/80 uL) solution followed by adding 50 uL Nafion, then the mixture was ultrasonicated for 30 min to achieve a homogeneous ink.

For CO₂ electroreduction reaction, a flow of 20 sccm of CO₂ was continuously bubbled into the electrolyte to maintain its saturation. The linear sweep voltammetry (LSV) was performed at a scan rate of 5 mV/s. The electrolysis was conducted at selected potentials for 2 h to determine the reduction products and their Faradaic efficiencies.

Analysis of liquid products by NMR: 10.0 mL of D₂O was mixed with 3.53 μ L of dimethyl sulfoxide (DMSO) as solution A for next step. Then, 500 μ L of the electrolyte after electrolysis was mixed with 100 μ L of D₂O and 50 μ L of solution A (DMSO as internal standard) for ¹H NMR analysis. The water suppression method was used.

The gaseous products (H_2 and CO) were periodically sampled and examined by gas chromatography (GC-2014C, SHIMADZU) with N_2 as the carrier gas. They were first analyzed by a thermal conductivity detector (TCD) for the H_2 concentration, and then analyzed by flame ionization detector (FID) with a methanizer for CO. The concentration of gaseous products was quantified by the integral area ratio of the reduction products to standards.

The faradic efficiency of formate was calculated as follow [5]:

$$FE(\%) = \frac{Q_{formate}}{Q_{total}} = \frac{n_{formate} \times N \times F \times 100\%}{j \times t}$$
(1)

Where $n_{formate}$ is the measured amount of formate in the cathodic compartment; *N* is the number of electrons required to form a molecule of formate (*N* = 2); *F* is the Faraday constant; *j* is the recorded current; *t* is the reaction time.

The faradic efficiencies of gaseous products were calculated as follow [6]:

The volume of the sample loop (V₀) in GC is 1 cm³ and the flow rate of the gas is $v = 20 \text{ cm}^3/\text{ min.}$

The time it takes to fill the sample loop is:

$$t_0 = \frac{V_0}{v} = \frac{1cm^3}{20cm^3/min} = 0.05min = 3s \qquad (2)$$

According to the ideal gas law, under ambient temperature of 25°C, the amount of gas in each vial ($V_0 = 1 \text{ cm}^3$) is:

$$n = \frac{P \times V_0}{R \times T_0} = \frac{1.013 \times 10^5 Pa \times 1 \times 10^{-6} m^3}{8.314 J \cdot K^{-1} \cdot mol^{-1} \times 298.15K} = 4.0866 \times 10^{-5} mol$$
(3)

The number of electrons required to form a molecule of CO or H₂ are 2. Therefore, the number of electrons (*ni*) needed to get *xi* ppm of CO or H₂ is:

$$n_i = x_i \times n \times N_A \times 2 \tag{4}$$

Total number of electrons (*n*total) measured during this sampling period:

$$n_{\text{total}} = \frac{j \times t_0}{e} \tag{5}$$

The Faraday constant F is:

 $F = N_A \times e = 6.022 \times 10^{23} mol^{-1} \times 1.6022 \times 10^{-19} \text{C} = 96484.484 \text{C} \cdot mol^{-1}$ (6) Hence, the faradic efficiency of CO or H₂ is:

$$FE(\%) = \frac{n_i}{n_{\text{total}}} \times 100\% = \frac{x_i \times n \times F \times 2}{I_0 \times t_0} \times 100\%$$
(7)

Where *i* represents CO or H₂; I_0 is the recorded current obtained from the chronoamperogram; N_A is the Avogadro constant; *e* is elementary charge.

14. Faraday efficiency patterns

Figure S26 Comparison of formate Faraday efficiency in two electrocatalysis experiments using TOC-51 (a), TOC-57 (b) and TOC-58 (c).

Figure S27 Comparison of H₂ Faraday efficiency in two electrocatalysis experiments using **TOC-51** (a), **TOC-57** (b) and **TOC-58** (c).

Figure S28 Comparison of CO Faraday efficiency in two electrocatalysis experiments using TOC-51 (a), TOC-57 (b) and TOC-58 (c).

Figure S29 Faradaic efficiency of I (first experienment) and II (second experienment) at different potentials of **TOC-51** (a) and **TOC-57** (b).

15. Stability testing of compounds

Figure S30 Total current density *vs.* time curve during electrolysis at different applied potentials of TOC-51 (a), TOC-57 (b) and TOC-58 (c).

Figure S31 XPS spectrum of compound TOC-57 before and after CO₂RR.

Figure S32 XPS spectrum of compound TOC-58 before and after CO₂RR.

Figure S33 ESI-MS spectrum of compound TOC-58 before and after CO₂RR.

16. Rerference

[1] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42, 339-341.

[2] G. M. Sheldrick, A short history of SHELX. Acta Crystallogr., 2008, A64, 112-22.

[3] G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr., 2015, C71, 3-8.

[4] CrysAlisPro, Version 1.171.38.43b (Rigaku Oxford Diffraction, 2015) and CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) CrysAlisPro, Version 1.171.36.21 (release 14-08-2012 CrysAlis171.NET), Agilent Technologies.

[5] A.L. Spek, Acta Cryst., 2015, 71, 9-18.

[6] D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi and B.S. Yeo, ACS Catal., 2015, 5, 28142821.