Supplement information for Nanoplasmonic sensing to study CO and oxygen adsorption and CO oxidation on size-selected Pt₁₀ clusters.

Benjamin Demirdjian^{1*}, Mykhailo Vaidulych^{2**}, Igor Ozerov¹, Frédéric Bedu¹, Štefan Vajda², Claude R. Henry¹

1) Aix Marseille Univ, CNRS, CINAM, Marseille, France

2) Department of Nanocatalysis, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech

Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic

**Corresponding Author email: <u>mykhailo.vaidulych@jh-inst-cas.cz</u> (MV)

* Other Corresponding Author email: <u>benjamin.demirdjian@cnrs.fr</u> (BD)

Fig. S1 Top: variation of the sample temperature (T) versus time. Bottom: Experimental LSPR shift $\Delta\lambda$ versus time of Au disks (h = 17.5 nm, p = 300 nm, d = 140 nm) covered with a SiO2 layer (6 nm) deposited on an ITO film (21 nm) supported on a HQ-float glass window versus time. $\Delta\lambda$ is defined with respect to a reference which is the plasmonic sample at T = 418 K under high vacuum ($P \sim 10^{-6} \text{ Pa}$).

Fig. S2 Experimental Au LSPR shift and sample temperature versus time at T = 418 K and $P_{CO} = 2.3$ Pa for Pt_{10} clusters deposited on Au disks (h = 17.5 nm, p = 300 nm, d = 140 nm) covered with a SiO₂ layer (6 nm) and deposited onto an ITO-coated film (21 nm) glass window. The LSPR shift is defined with respect to a reference which is the plasmonic sample before CO adsorption. The accuracy of the wavelength measurements in the LSPR response is 0.01 nm (error bars).

Fig. S3 Experimental LSPR shift $\Delta\lambda$ versus sample temperature (T) of Au disks (h = 17.5 nm, p = 300 nm, d = 140 nm) covered with a SiO2 layer (6 nm) deposited on an ITO film (21 nm) supported on a HQ-float glass window. $\Delta\lambda$ is defined with respect to a reference which is the plasmonic sample at T = 418 K under high vacuum ($P \sim 10^{-6}$ Pa). There is a linear (fitted) part corresponding to the increase in T and a non-linear part corresponding to the decrease in T.