Supplementary Information (SI) for Nanoscale. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Fig. S1 k-space (k²-weighted) for the a) Au L₃-edge and b) Ag K-edge of Au₁₀₄Ag₄₀.

Fig. S2 Previously reported³⁰ ESI-MS spectrum of $Au_{104}Ag_{40}$. Inset shows zoomed in view of 3+ peak set.

Fig. S3 Bond distribution for the Au_{144} NC. General trend is that bonds between atoms towards the core of the NC are shorter in length, and bonds between atoms towards the surface of the NC are longer in length. This information can aid in the assignment of Ag dopant locations in $Au_{104}Ag_{40}$ through comaprison of bond distances determined through EXAFS fitting.

Fig. S4 Fitted FT-EXAFS spectra for the a) Au L₃-edge and b) Ag K-edge of Au₁₀₄Ag₄₀. Peaks arise from bonding interactions within the sample. Intense peak ~2.0 Å in each spectra is characteristic of a M-S bonding interaction. Doublet peak in the Au L₃-edge spectra ~2.5-3.0 Å is characteristic of Au-M alloy interactions. Peak in the Ag K-edge spectra ~3.0 Å is characteristic of Ag-M alloy interactions. The relative intesnity of each peak also provides insight into the CN of each interaction. Au-S and Ag-S CNs are roughly equal, while the Au-M CN is expected to be higher than the Ag-M CN.

Fig. S5 Fitted FT-EXAFS spectra for the refined fit of the a) Au L_3 -edge and b) Ag K-edge of Au₁₀₄Ag₄₀. Fit quality is slightly improved upon fixing the CN according to values from the proposed model, providing evidence of its accuracy.