COMMUNICATION

The used potential fields and forcefield parameters utilized in this study are outlined as follows:

The potential parameters used in AAMD simulations are listed in Table S1. The atomic dynamics within the molten glass matrix are primarily dictated by the two-body BMH potential ^{S1, S2}. The pair potential, denoted as $U_{ij}(r_{ij})$, describes the interaction between atoms i and j as a function of their separation distance r_{ij} . The expression of $U_{ij}(r_{ij})$ is described as:

$$U_{ij}(r_{ij}) = \frac{e^2 q_i q_j}{4\pi\varepsilon_0 r_{ij}} + A_{ij} exp\left(\frac{-r_{ij}}{B_{ij}}\right) - \frac{C_{ij}}{r_{ij}^6} + \frac{D_{ij}}{r_{ij}^{12}}$$
(1)

where *q* represents the effective charge associated with each atom, ε_0 denotes the dielectric constant, and A_{ij} , B_{ij} , C_{ij} , and D_{ij} represent force constants governing interactions between atom pairs.

In the simulation, the effective charge assigned to the oxygen atom is -0.945, while the charges for other atomic species are derived utilizing a prescribed charge allocation methodology, as delineated in previous works ⁵³. The potential field comprises four main components: the long-range Coulombic interaction, the van der Waals term, short-range Born repulsion interactions, and an unphysical attraction occurring at distances less than 1 Å. These components collectively govern the interactions within the system. The interactions between carbon and oxygen atoms (C and O*, respectively) encompass both electrostatic and short-range interactions. Here O* denotes the oxygen atom within the CO_2 , distinguishing it from the oxygen atom (O) found in the melt. The following expression defines the potential energy U(1,2) governing the interaction between 1 and 2 of CO_2 molecules:

$$U(1,2) = \sum_{i \in 1} \sum_{j \in 1} \left[4\varepsilon_{ij} \left[\left[\left(\sigma_{ij}/r_{ij} \right)^{12} - \left(\sigma_{ij}/r_{ij} \right)^{6} \right] + \frac{e^{2}q_{i}q_{j}}{4\pi\varepsilon_{0}r_{ij}} \right] \right]$$
(2)

where q_c and q_o^* represent the effective charges on C and O* atoms, respectively, with values of 0.5888 and -0.2944. Additionally, σ_{ij} and r_{ij} denote the Lennard-Jones potential parameters governing interactions between the C-C, C-O*, and O*-O* pairs. The intramolecular potential, employing a harmonic form to accommodate molecular flexibility, is applied to faithfully reproduce the bending vibration of CO₂. This potential is described in detail in reference ⁵⁴:

$$U_{\theta} = 1/2k_{\theta}(\theta - \pi)^2 \tag{3}$$

where κ_{θ} represents the fixed force parameter and θ signifies the bending angle.

The potential energy is used to describe the interactions between a CO₂ molecule and the cation (X_j) within the melt. The definition of potential energy is described by the following expression:

$$U_{CO_2 - X_j} = \sum_{i\varepsilon [CO_2]} \left[\frac{e^2 q_i q_j}{4\pi\varepsilon_0 r_{ij}} + A_{ij} exp\left(\frac{-r_{ij}}{B_{ij}}\right) - \frac{C_{ij}}{r_{ij}^6} + \frac{D_{ij}}{r_{ij}^{12}} \right]$$
(4)

where i represents the atoms of CO₂ molecule and j covers all cations in melt.

The interactions between the C and O atoms are governed by the More potential, as detailed in reference ⁵⁴:

$$U_{C-0} = D_e \Big[\Big(1 - e^{-(r-l)/\lambda} \Big)^2 - 1 \Big]$$
(5)

where D_e represents the dissociation energy of carbon-oxygen (*C*-*O*) bond; l denotes the equilibrium distance of carbon-oxygen (*C*-*O*) bond; λ denotes the effective width of the potential.

All mentioned force field parameters have been valid by prior publications and are readily available in our preceding article. The computation of Pair Distribution Function (PDF) is integral to characterizes the spherically averaged local organization surrounding a specific atom. The computation equation is defined as ⁵⁵:

$$g_{ij}(r) = \frac{V}{N_i N_j} \sum_j \frac{\left(n_{ij} \left(r - \frac{\Delta r}{2}, r + \frac{\Delta r}{2} \right) \right)}{4\pi r^2 \Delta r}$$
(6)

where $N_{i(j)}$ denotes the total number of atoms of type i (j), and for atoms of the same species $N_{i(j)} = N_i - 1$; V represents the

 $n_{ij}\left(r - \frac{\Delta r}{2}, r + \frac{\Delta r}{2}\right)_{is}$ is the average number of atoms j surrounding atom i within the distance volume of the simulation box; $\left(r - \frac{\Delta r}{2}, r + \frac{\Delta r}{2}\right)$

In the analysis of each atomic pair, the initial peak evident in their respective PDF profiles signifies the distribution of distances within the first-neighbor shell. Particularly notable in the T-O pair context, the subsequent minimum following this initial peak, identified as the first valley of the PDF curve, serves as a reliable marker for the upper limit of this distribution. Specifically, in the case of the T-O pair, a subsequent minimum following this initial peak, termed the first valley of the PDF curve, serves as a robust indicator of the upper limit of this distribution. The identification of this upper limit, referred to as the cut-off distance, holds critical significance in the determination of both the T-O coordination number and the proportion of TO_n polyhedral structures. The average coordination number (CN) can be obtained by integrating the associated PDF curve up to the cut-off value, as outlined below ^{S5}:

$$N_{ij}(r) = \frac{4\pi N_j}{V} \int_0^r r^2 g_{ij}(r) dr$$
(7)

The analysis of mean square displacement (MSD) and self-diffusion coefficient (D) offers valuable insights into the transport behavior in the melt. The self-diffusion coefficient is determined from the MSD using the Einstein relation as S6:

$$D = \frac{1}{6L}MSD = \frac{1}{6LNM} \sum_{1}^{N} \sum_{k}^{M} \left\langle \left| r_{i}(t_{k} + L) - r_{i}(t_{k}) \right|^{2} \right\rangle$$
(8)

where $\langle |r_i(t_k + L)(t_k)|^2 \rangle$ represents an average at time L to be taken with different time origins (t_k) of k^{th} time series data; Mdenotes the number of time series data.

I _	Silicate potential			
	A _{ij} (eV)	^B _{ij} (Å)	^С _{ij} (eV/ Å ⁶)	^D _{ij} (eV/ Å ¹²)
Ca ^{0.945} -O ^{-0.945}	155356.043	0.178	42.2587	0
Si ^{1.89} -O ^{-0.945}	50186.0509	0.161	46.2967	0
Al ^{1.4175} -O ^{-0.945}	28482.1454	0.172	34.577	0
Na ^{0.4725} -O ^{-0.945}	145402.3125	0.178	18.8075875	0
O ^{-0.945} -O ^{-0.945}	6479.68212	0.276	85.0902	0
II	CO_2 intramolecular potential: $c - o^* = 1.102 \text{ H}$; $k_{\theta} = 4.6096 \text{ eV/rd}$			
III –	CO ₂ -CO ₂ intermolecular potential			
	<i>ɛ</i> (eV)	σ (Å)		
C ^{0.5888} -C ^{0.5888}	0.002490	2.792		
C ^{0.5888} -O*-0.2944	0.004214	2.896		
O*-0.2944-O*-0.2944	0.007135	3.000		
IV _	More potential between C of CO ₂ and O of silicate			
	D _e (eV)	l (Å)	λ (Å)	
C-0	5.0249	1.162	0.2	
V	CO ₂ -silicate potential			
	A _{ij} (eV)	^B _{ij} (Å)	^C _{ij} (eV/ Å ⁶)	^D _{ij} (eV/ Å ¹²)
O ^{-0.945} -O*-0.2944	3239.84106	0.276	42.5451	0
Ca ^{0.945} -O*-0.2944	155356.043	0.178	42.2587	0
Si ^{1.89} -O* ^{-0.2944}	50186.0509	0.161	46.2967	0
Al ^{1.4175} -O*-0.2944	28482.1454	0.172	34.577	0
Na ^{0.4725} -O*-0.2944	145402.3125	0.178	18.8075875	0

References

Table S1 Potential parameters used in AAMD simulations.

S1 K. Li, H. Li, C. Jiang, J. Zhang, Z. Liu and S. Ren, Mol. Simul., 2020, 46, 289–299.

S2 Y. Wang, T. Sakamaki, L. B. Skinner, Z. Jing, T. Yu, Y. Kono, C. Park, G. Shen, M. L. Rivers and S. R. Sutton, Nat. Commun., 2014, 5, 1-10.

S3 K. Zheng, Z. Zhang, F. Yang and S. Sridhar, ISIJ Int., 2012, 52, 342–349.

S4 B. Guillot and N. Sator, Geochim. Cosmochim. Acta, 2011, 75, 1829–1857.

S5 Z. Piao, L. Zhu, X. Wang, Z. Liu, B. Wang, P. Xiao and Z. Yuan, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2020,

51, 2119–2130.
S6 C. Kim, O. Borodin and G. E. Karniadakis, J. Comput. Phys., 2015, 302, 485–508.