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Figure S1. (a) Estimated unit prices of different raw materials of common interfacial 
materials used in magnetron sputtering and polymer coating process. (b) Main 
properties of commonly adopted methods to construct artificial SEI.
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Figure S2. Comparison of electrochemical performances of half cell and full cell with 

different ratio of Li salts.

Figure S3. SEM images of PNL layer with different magnifications.



Figure S4. SEM images of pure layer with different magnifications.

Figure S5. Positive linear sweep voltammograms (LSV) sweep to test the oxidation 

stabilities of bare Cu foil without protection (a) and pure layer (b) in Li||stainless-steel 

cells at a scanning rate of 0.1 mV s−1.

Figure S6. Voltage capacity profiles of different cycles of (a) bare Cu foil, (b) pure 
and (c) PNF layers modified at 1.0 mA cm-2 for 1.0 mAh cm-2.

Figure S7. Coulombic efficiency of repeated Li plating/stripping at 1.0 mA cm-2 for 2 
h on bare Cu foil and Cu foil covered by pure and PNF layer.



Figure S8. Voltage capacity profiles of different cycles of (a) bare Cu foil, (b) pure 
and (c) PNF layers modified at 1.0 mA cm-2 for 2.0 mAh cm-2. 

Figure S9. Voltage capacity profiles of different cycles of (a) pure and (b) PNF layers 
modified at 3.0 mA cm-2 for 3.0 mAh cm-2. 

Figure S10. Voltage capacity profiles of different cycles of (a) pure and (b) PNF 
layers modified at 5.0 mA cm-2 for 5.0 mAh cm-2. 



Figure S11. Nyquist plots of three styles of anodes after different cycles of bare LiǁCu 

cells.



Figure S12. XPS C 1s spectrum of the SEIs after Li plating with pure and PNF layers 
modified.



Figure S13. XPS O 1s spectrum of the SEIs after Li plating with pure and PNF layers 
modified.

Figure S14. AFM images of SEI on Li metal after plating at 1.0 mA cm-2 for 1 h (1.0 
mAh cm-2) with pure and PNF layers modified.



Figure S15. Charge/discharge profiles of the full cells at different rates.

Figure S16. Charge/discharge profiles of the full cells at different cycles.



Figure S17. (a-b) The sized of the electrodes in pouch cells. (c) The optical image of 

pouch cell assembled in laboratory. (d) Electrochemical performance of PNF layer 

based pouch cell. 



Figure S18. XPS C 1s depth profiles of the CEI layers on NCM811 electrodes after 10 
cycles.



Figure S19. SEM image of cycled NCM811 cathodes in pure layer modified system.

Figure S20. SEM image of cycled NCM811 cathodes in PNL layer modified system.

Figure S21. The typical structure of layered phase.



Figure S22. The typical structure of rock-salt phase.

Table R1. Electrochemical performances of CNF/nc-TNO@Li||NCM811 full cells 

and those of recently reported high-voltage Li metal batteries (LMBs).

Artificial SEI Cathode High voltage Initial capacity Capacity retention Ref.

PNF LiNi0.8Co0.1Mn0.1O2 4.5 V 218.6 mAh g-1 (0.5 C)

80.3 % (300th)

84.3% (200th)

88.7% (100th)

This 

work

LiCN/LiF/ 

polyamino nitriles
LiNi0.8Co0.15Al0.05O2 4.2 V 190.2 mAh g-1 (0.2 C) 88.2 % (100th) [1]

YF3/PMMA LiNi0.8Co0.1Mn0.1O2 4.3 V 194.0 mAh g-1 (1 C) 83.78 % (200th) [2]

Ti3C2Tx MXene LiNi0.5Co0.2Mn0.3O2 4.25 V 165 mAh g-1 (0.2C) 83 % (200th) [3]

PDOL/(rGO) LiNi0.6Co0.2Mn0.2O2 4.3V 173.5 mAh g-1 (0.3C) 86 % (100th) [4]

LiAlO2 LiNi0.8Co0.1Mn0.1O2 4.2 V 185 mAh g-1 (1 C) 82.4 % (200th) [5]

Mo6S8/carbon LiNi0.8Co0.1Mn0.1O2 4.3 V 160 mAh g-1 (1 C) 63 % (200th) [6]

PVA polymer LiNi0.6Co0.2Mn0.2O2 4.2V 175 mAh g-1 (0.5 C) 74.5 % (120th) [7]

sodium alginate LiNi0.6Co0.2Mn0.2O2 4.3 V 120.5 mAh g-1 (0.5 C) 93.8 % (200th) [8]

LiZrO(NO3)2 LiCoO2 4.3 V 138.8 mAh g-1 (0.5 C) 72.4 % (100th) [9]

CsPF6 LiNi0.6Co0.2Mn0.2O2 4.3 V 155 mAh g-1 (0.1 C) 75 % (120th) [10]

PEGDA/LiDFOB LiNi0.8Co0.1Mn0.1O2 4.3 V 206.7 mAh g-1 (0.5 C) 58.4 % (300th) [11]

AgSCF3 LiCoO2 4.6V 205.5 mAh g-1 (0.1C) 63.3 % (200th) [12]
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