High-Throughput Screening of Bifunctional Catalysts for Oxygen Evolution/Reduction Reaction at the Subnanometer Regime

Rahul Kumar Sharma,^a Harpriya Minhas,^a and Biswarup Pathak^{a,*}

^aDepartment of Chemistry, Indian Institute of Technology Indore, Indore 453552, India

*E-mail: <u>biswarup@iiti.ac.in</u>

<u>Contents</u>	<u>Page No.</u>
1. Density functional theory (DFT) details	S2
2. Scaling relationship investigation	S2
3. Reaction Energy Diagram of OER and ORR activity	S3
4. Distribution analysis of I_{df} with E_{*o} , E_{*oH} , and E_{*oOH}	S3
5. References	S4

1. Density Functional Theory (DFT) Details

Text S1:

All the plane-wave spin-polarized density functional calculations were conducted using the Vienna *ab initio* simulation package (VASP) with the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA).^{1,2} Ion core and valence electron interactions were described using the projector augmented wave (PAW) method.³ For relaxation calculations, kinetic energy cut-offs of 500 eV with energy convergence criteria of 10^{-6} eV were employed, and geometric relaxation continued until forces on atoms were smaller than 0.02 eV/Å.⁴ Gaussian smearing with a sigma value of 0.2 eV was applied and the Γ -centered (1×1×1) k-point grids were considered for the sampling of the Brillouin zone in congruence with the previous reports.^{5,6} However, a higher (3 × 3 × 3) k-mesh was used to calculate the density of states (DOS). A sufficiently large box with dimensions $20 \times 20 \times 20$ Å³ was utilized to optimize the distinct geometries to avoid the possibility of spurious interaction between the adjacent images along each axis.

2. Scaling Relationship Investigation

Figure S1. Scaling relationship between (a) $E_* o^{vs E_* oH}$ and (b) $E_* oH^{vs E_* oOH}$ for differentsized TM_n subnano clusters.

3. Reaction Energy Diagram of OER and ORR activity

Figure S2. Free-energy diagrams of OER elementary steps at (a) 0 V and (b) 1.23 V, and ORR elementary steps at (c) 0 V and (d) 1.23 V.

4. Distribution analysis of I_{df} with $E_* o' E_* o_{H'}$ and $E_* o_{OH}$.

Figure S3. Distribution analysis between (a-c) $E_{*0}, E_{*0H}, and E_{*00H}$ and I_{df} , and (d-f) $E_{*0}, E_{*0H}, and E_{*00H}$ and ϵ_{d} .

5. References

- 1. G. Kresse and J. Hafner, *Phys. Rev. B*, **1994**, 49(20), 14251
- J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, *Phys. Rev. B*, 1992, 46(11), 6671
- 3. G. Kresse, D. Joubert, *Phys. Rev. B*, **1999**, *59*(3), 1758.
- 4. M. P. Teter, M. C. Payne and D. C. Allan, *Phys. Rev. B*, **1989**, 40(18), 12255.
- 5. B. Zandkarimi and A. N. Alexandrova, J. Phys. Chem. Lett., 2019, 10(3), 460-467.
- R. K. Sharma, A. S. Nair, N. Bharadwaj, D. Roy and B. Pathak, J. Phys. Chem. C, 2023, 127(1), 217-228.