Supporting Information

Liposome Biodistribution Mapping with in vivo X-ray Fluorescence Imaging

Giovanni M. Saladino, Po-Han Chao, Bertha Brodin, Shyh-Dar Li and Hans M. Hertz

*Corresponding author. Email: saladino@kth.se

Fig. S1.

Synthesis Scheme. Ruthenium-encapsulated liposomes (Ru-Lipo) were synthesized with a thin-film hydration method. (a) A solution of lipids in chloroform was evaporated using a rotavapor at 50 °C, forming a thin film. (b) The film was hydrated with an aqueous solution of Ru(bpy)₃, followed by subsequent extrusions with polycarbonate membrane, leading to the formation of uniform Ru-Lipo. (c) The sample was dialyzed multiple times and (d) concentrated with centrifuge filter units.

Fig. S2.

Morphological characterization. (a) High-resolution Cryo-TEM micrograph of rutheniumencapsulated liposomes, Ru-Lipo, showing the lipid bilayer structure. Scale bar, 100 nm. (b) Size distribution histogram of Ru-Lipo obtained from the Cryo-TEM micrographs, leading to an estimated diameter of 88 ± 29 nm.

Fig. S3.

Stability characterization. (a) Hydrodynamic size distribution of the ruthenium-encapsulated liposomes, Ru-Lipo and (b) longitudinal study in saline solution (0.9 %) at 37 °C (\pm SD).

Fig. S4.

X-ray fluorescence (XRF) properties of Ru-Lipo. (a) XRF K α emission peaks as a function of Ru-Lipo's concentration, after background removal. (b) Calibration curve for XRF intensity as a function of the concentration of Ru standards.

Fig. S5.

Optical fluorescence properties of Ru-Lipo. (a) Fluorescence emission spectra of Ru-Lipo (in red) and the free dye, $Ru(bpy)_3$ (in blue). (b) Calibration curve for optical fluorescence intensity as a function of the concentration of $Ru(bpy)_3$.

Table S1. Ruthenium-encapsulated liposome (Ru-Lipo) properties. Estimated values for encapsulation efficiency (EE), Ru-to-Lipid ratio, Load-to-Lipid ratio, initial and effective lipid ratios (w/w).

Encapsulation	Ru-to-Lipid Ratio	Load-to-Lipid Ratio	Initial Lipid Ratio	Effective Lipid Ratio
Efficiency (EE)	(w/w)	(w/w)	(DSPC:CH:DSPE-PEG)	(DSPC:CH:DSPE-PEG)
10.00 %	1.80 %	13.2 %	3:1:1	3:0.8:0.7

Fig. S6.

Structural characterization. (a) FT-IR spectra of Ru-Lipo (blue), Ru(bpy)₃ (orange), DSPC (yellow), CH (purple), and DSPE-PEG (green). (b) UPLC plots of diluted samples containing Ru-Lipo (blue), empty liposomes (orange), DSPC (yellow), CH (purple), and DSPE-PEG (green).

Fig. S7.

Cell studies. (a) Real-time cell analysis (RTCA) assay on macrophages (RAW 264.7), after exposure to ruthenium-encapsulated liposomes (Ru-Lipo, in red) and free ruthenium dye, Ru(bpy)₃ (in blue) with a ruthenium concentration of 50 ppm. The cell index values are compared to unexposed (negative) control cells (black). Measurements were made in triplicates (\pm SD). (b) Live images of RAW 264.7 macrophages incubated with Ru-Lipo ([Ru] = 50 ppm) for 1 h. Optical fluorescence signal from Ru-Lipo is shown in red. Trans-luminescence signal is included to highlight cell morphology. Scale bar, 50 µm.

In Vivo X-ray Fluorescence Imaging. Mice injected with Ru-Lipo were imaged after 1 h, 5 h, and 24 h. X-ray fluorescence signal overlaid on transmitted photons. Tumor area is indicated with a dashed white circle. Scale bar, 1 cm.

Fig. S9.

In Vivo Optical Fluorescence Imaging. Mice injected with Ru-Lipo were imaged after 1 h, 5 h, and 24 h. Optical fluorescence signal overlaid on photograph. Tumor area is indicated with a dashed red circle. Scale bar, 1 cm.