Electronic Supplementary Information

Zn-doped NiMoO₄ enhances rechargeable aqueous NiZn

batteries

Xingyan Zhang* and Dag Noréus

Inorganic and Structural Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, SE 106 91 Stockholm, Sweden

*E-mail of the corresponding author: xingyan.zhang@mmk.su.se

Fig. S1 SEM images of obtained powder materials: (a) $NiMoO_4$, (b) $Ni_{0.75}Zn_{0.25}MoO_4$, (c) $Ni_{0.5}Zn_{0.5}MoO_4$, (d) $Ni_{0.25}Zn_{0.75}MoO_4$, and (e) $ZnMoO_4$, respectively.

Fig. S2 (a) the corresponding element spectrum, (b) the XRD patterns of obtained bind-free materials, (c) the corresponding partial enlarged patterns, and (d) the XPS spectrum of $Ni_{0.75}Zn_{0.25}MoO_4$.

Fig. S3 Comparison of electrochemical performance of obtained materials in a three-electrode system (6 M KOH): (a) comparison GCD curves, and (b) specific capacitances at different current densities.

Fig. S4 Electrochemical performance of obtained powder materials in a three-electrode system (6 M KOH): (a and b) comparison CV and GCD curves, respectively, (c and d) CV and GCD curves of $Ni_{0.75}Zn_{0.25}MoO_4$ powder.

Fig. S5 Specific capacitances of obtained powder materials at different scan rates and current densities.

Fig. S6 Comparison of EIS plots of obtained materials in a three-electrode system (6 M KOH).

Fig. S7 Comparison of cycling stability of all the obtained powder materials at 20 A g⁻¹.