ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Supplementary Information

High Yield Exfoliation of a Sub-Micron hexagonal Boron Nitride Using a Solvent Free Method

Diana Santiago, ^b Maricela Lizcano, ^b Sean P. McDarby, ^a Ching-Cheh Hung, ^cand Baochau N. Nguyen*^a

Table SI (002) peak position and (002) FWHM of $A_{\rm I}\mbox{-}{\rm Cl}$ and $A_{\rm I}\mbox{-}{\rm F}$				
	(002) Peak position	(002) FWHM		
A – pristine <i>h</i> BN	26.707	0.378		
A _I -LiCl	26.571	0.483		
A I-NaCl	26.667	0.461		
A I-KCI	26.686	0.487		
A _l -LiF	26.457	0.469		
А_{I-H}-NaF	26.628	0.485		
А_{І-Н}- КF	26.571	0.487		

Figure S1 (a) and (b) XRD patterns of intercalated A_{I} -F on both (002) and (100) planes, respectively, using fluoride salts as activation agents. Note that (002) plane of pristine *h*BN was scaled down for observation and comparison to the exfoliated A_{I} -Cl.

Figure S2 SEM images of (a) pristine *h*BN, (b) intercarlated A_I using NaCl and (c) intercalated A_I using NaF as activation agents.

^{a.} Universities Space Research Association, 425 3rd Street SW. Suite 950, Washington DC 20024. E-mail: <u>Baochau.n.nguyen@nasa.gov</u>; Tel: +1-216-433-2738

^{c.} Boron Nitride Research and Engineering, LCC, Orlando, FL, 32827.

*Corresponding author

^{b.} NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH, 44135. Email: diana.santigao-dejesus@nasa.gov; Tel: +1-216-433-6068.

Journal Name

Table S2 (002) peak position and (002) FWHM of A _{I-H} -Cl and A _{I-H} -F			
	(002) Peak position	(002) FWHM	
A – pristine <i>h</i> BN	26.707	0.378	
A _{I-H} -LiCl	26.707	0.389	
A _{I-H} -NaCl	26.707	0.335	
A _{I-H} -KCl	26.707	0.357	
A _{I-H} -LiF	26.745	0.362	
A ⊩H-NaF	26.726	0.389	
A I-H−KF	26.707	0.386	

Figure S3 XRD patterns of a) (002) plane and b) (100) plane of exfoliated products, A_{I-H}-Cl, c) (002) plane and d) (100) plane of exfoliated products, AI-H-F, respectively. Note that the intensity of (002) plane of pristine hBN was scaled down for observation and comparison to the exfoliated A_{E-H}-Cl.

Table S3 (002) peak position of A_{E-H} -Cl and A_{E-H} -F		
	(002) Peak position	
A – pristine <i>h</i> BN	26.707	
A _E -LiCl	26.724	
A _E -NaCl	26.707	
A _E -KCl	26.688	
A _E -LiF	26.745	
A _E -NaF	26.707	
A _E -KF	26.707	

Figure S4 XRD patterns of a) (002) plane and b) (100) plane of exfoliated products, $\textbf{A}_{\text{E-H}}\text{-}\text{Cl},$ respectively, and c) XRD pattern of $\alpha\text{-}$ Fe₂O₃ (ICDD No.01-079-0007) detected in A_{E-H}-LiCl, d) (002) plane and e) (100) plane of exfoliated products, A_{E-H}-F, respectively. Note that the intensity of (002) plane of pristine hBN was scaled down for observation and comparison to the exfoliated A_{E-H} -Cl.

Figure S5 Full Width at Half Maximum (FWHM) of (002) and (100) planes of exfoliated/heat treated, AE-H.

Table S4 % yield of A_{E-H} with different activation agents		
A _{E-H}	% Yield	
A _{E-H} -LiCl	>100	
A _{E-H} -NaCl	>100	
A _{E-H} -KCl	>100	
A _{E-H} -LiF	93.0	
A _{E-H} -NaF	83.6	
A _{E-H} -KF	91.0	

ARTICLE

2 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Journal Name

Figure S6 Raman spectroscopy of a) $A_{\text{EH}}\text{-}\text{CI}$ and b) $A_{\text{E-H}}\text{-}\text{F},$ compared to A.

Table S5 Raman peak shift,	peak height and FWHM of A_{EH} -Cl and
A _{E-H} -F	

	Peak shift	Peak	FWHM
	(cm ⁻¹)	height	
A – pristine <i>h</i> BN	1360.2	2404	11.8
A _{E-H} -LiCl	1362.8	723	13.6
A _{E-H} -NaCl	1358.3	2242	11.9
A _{E-H} -KCl	1359.3	6541	12.1
A _{E-H} -LiF	1365.1	5986	13.5
А_{Е-Н}- NaF	1365.5	3071	11.0
A _{E-H} -KF	1367.2	1725	10.7