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Fig. S1. X-ray diffraction analysis. (a) Patterns collected for quasi-2D MIL-100 (Fe) 

sample synthesized under optimized conditions and (b) patterns collected for needle-like 

structures presented in Fig. 1 in the main manuscript (grown on BTC-2-Needle). Here, 

the green labels show the matching diffractions between the two samples, and the red 

labels show extra unidentified diffraction, suggesting the formation of both the quasi-2D 

MIL-100 (Fe) phase and other secondary phases based on the interaction of BTC and Fe 

sources. Patterns collected for recrystallized BTC as (c) BTC-1-Ribbon, (d) BTC-2-

Needle, and (e) as purchased BTC. The magnified portions of interest in each plot are 

shown on the right panels. 



Fig. S1 displays the XRD patterns for the quasi-2D MIL-100 (Fe), Needle-like structures 

shown in Fig. 2, and XRD patterns of benzene-1,3,5-tricarboxylic acid (BTC) prepared 

through various crystallization processes. The principal objective of this analysis was to 

determine the source of contaminants in the needle-like structures and to investigate 

various assemblies of BTC molecules. XRD pattern for samples prepared under 

optimized conditions from BTC-1-Ribbon (Fig. S1 (a)) exhibits dominant peaks associated 

with MIL-100 (Fe) with no significantly detectable impurity peaks, consistent with the data 

in existing literature 1-3. Fig. S1 (b) shows the XRD peaks of MIL-100 (Fe) particles (2Θ=5-

15) as well as noticeably sharp and unidentified peaks within 2Θ=15°-30° and at the 

higher end of the 2θ scale. These peaks do not originate from starting materials and might 

stem from needle-like structures shown in Fig. 2 (main text). It is noteworthy to mention 

that the needle-like structures are not pure BTC-1-Needle anymore and have 

incorporated iron species in their structure and we do not expect to see the original BTC-

1-Needle peaks in this sample. Fig. S1 (c) shows the XRD pattern for the self-assembled 

BTC molecules with a great degree of texture 4. This texture, resulting from the highly 

aligned orientation of crystals within the polycrystalline sample, manifests in our XRD data 

as an unusually high signal-to-noise (S/N) ratio, which corroborates the formation of 

highly oriented ribbons. Fig. S1 (d and e) display the XRD pattern for the recrystallized 

BTC molecules in the form of needles (BTC-2-Needle) and the as-purchased BTC ligand. 



Fig. S2. Scanning electron microscopy analysis. (a) Bulk BTC before the synthesis, 6 and 

24 hours into the synthesis. (b) BTC-2-Needle BTC before the synthesis, 6 and 24 hours 

into the synthesis. (c)BTC-1-Ribbon BTC before the synthesis, 1 and 24 hours into the 

synthesis.



Fig. S3. The BET analysis of 3D MIL-100 (Fe) made via traditional synthesis route. 

Fig. S4. The effect of (a) pH and (b) adsorbent mass on adsorption of RhB via quasi-2D 

MIL-100 (Fe). 



Fig. S5. Van’t Hoff plot for the adsorption of RhB via quasi-2D MIL-100 (Fe).



Fig. S6. Performance assessment and structural analysis of used adsorbent. (a)  

Reusability of the quasi-2D MIL-100 (Fe) up to 8 cycles. (b) the XRD pattern of the used 

quasi-2D MIL-100 (Fe) after multiple time reuse compared to the fresh adsorbent. (c-e) 

TEM micrograph of the used sample showing the Q2D structure and higher resolution 

images showing no significant signs of degradation, and (f) an SEM image of the use 

quasi-2D MIL-100 (Fe) with a Q2D morphology. 



Table S1. Adsorption kinetic and isotherm data. 

Kinetic parameters 
Pseudo-first Model Pseudo-second Model

Qe (mg g-1) R2 K1 (min-1) Qe (mg g-1) R2 K2 (g mg-1 min-1)

27.8 0.869 0.05 30.3 0.991 0.00364

Isotherm parameters 
Langmuir Model Freundlich Model

Qm (mg g-1) R2 B (L mg-1) Kf R2 n

86.5 0.994 1.7 4.85 0.952 4.2



Table S2. Removal of RhB organic dye by metal-organic frameworks 

Adsorbent
Mass

(mg)

Time

(min)
pH

T 

(ºC)

Isotherm 

model

Adsorption 

capacity

(Q, mg g-1)

Kinetics 

model
Ref.

Fe3O4/Conventional 

MIL-100(Fe)
20 120 4-8 RT Freundlich 28

Pseudo-

second 

order

5

Conventional MIL-100 

(Fe)
100 360 4-10 RT Langmuir 61.9 Elovich 6

Nanoscale MIL-100 

(Fe)
30

Up to 

30
6 RT Langmuir 76

Pseudo-

second 

order

7

Conventional MIL-100 

(Fe)
25 400 6 RT Langmuir 62

Pseudo-

second 

order

This 

work

Quasi-2D MIL-100 

(Fe)
25 90 6 RT Langmuir 86.5

Pseudo-

second 

order

This 

work
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