Simultaneous formation of helical and sheet-like assemblies from short azapeptides enables spontaneous resolution

Xiaosheng Yan,*^[a,b] Peimin Weng,^[a] Jinlian Cao,^[a] Kexin Lin,^[b]

Yuanwei Qi,^[b] Xin Wu,^[b] and Yun-Bao Jiang*^[a]

^[a] Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and *i*ChEM, Xiamen University, Xiamen 361005, China.

^[b] Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China.

*E-mail: xshyan@xmu.edu.cn; ybjiang@xmu.edu.cn.

Supporting Information

Contents

1. Syntheses and characterizations	S2
2. Experimental data	S5
3. ¹ H NMR and ¹³ C NMR spectra	S22
4. References	S30

1. Syntheses and characterizations

Scheme S1. General procedures for the syntheses of 1I and 1H

Compounds **XPhAN₂H₃** ($\mathbf{X} = \mathbf{I}$, \mathbf{H}) were synthesized according to the same procedure as that reported in the literature.^{S1}

1I: To a CH₃CN solution (20 mL) of **IPhAN₂H₃** (0.50 g, 1.50 mmol), excess phenyl isocyanate (0.5 mL) was added, and the mixture was stirred for 24 h at room temperature. After filtration, the solid was recrystallized in CH₃CN and dried in vacuum to obtain **1I** (0.60 g, 85% yield).

1H: To a CH₃CN solution (20 mL) of **HPhAN₂H₃** (0.40 g, 1.93 mmol), excess phenyl isocyanate (0.6 mL) was added, and the mixture was stirred for 24 h at room temperature. After concentration in vacuum, the solid was washed by Et₂O, and then recrystallized in CH₃CN and dried in vacuum to obtain **1H** (0.50 g, yield 75%).

L-**II**: ¹H NMR (500 MHz, DMSO-*d*₆): δ (ppm) 10.38 (s, 1H), 9.72 (s, 1H), 9.25 (s, 1H), 8.97 (s, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.66 (dd, J = 16.5, 7.5 Hz, 4H), 7.35 (t, J = 7.8 Hz, 2H), 7.16 (t, J = 7.3 Hz, 1H), 4.32 (s, 1H), 1.40 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, DMSO-*d*₆): δ (ppm) 180.13, 171.76, 166.85, 139.00, 137.17, 132.75, 129.56, 128.15, 124.82, 124.09, 99.50, 49.17, 16.54; HRMS (ESI): calcd for [C₁₇H₁₇IN₄NaO₂S]⁺: 491.0015, found: 491.0005.

D-**II**: ¹H NMR (500 MHz, DMSO-*d*₆): δ (ppm) 10.38 (s, 1H), 9.71 (s, 1H), 9.26 (s, 1H), 8.98 (s, 1H), 7.89 (d, J = 7.2 Hz, 2H), 7.76 – 7.53 (m, 4H), 7.42 – 7.28 (m, 2H), 7.20 – 7.11 (m, 1H), 4.33 (s, 1H), 1.39 (d, J = 6.3 Hz, 3H); ¹³C NMR (151 MHz, DMSO-*d*₆): δ (ppm) 180.16, 171.77, 166.85, 139.01, 137.17, 132.75, 129.56, 128.15, 124.83, 124.10, 99.50, 49.15, 16.56; HRMS (ESI): calcd for [C₁₇H₁₇IN₄NaO₂S]⁺: 491.0015, found: 491.0007.

L-**1H**: ¹H NMR (500 MHz, DMSO-*d*₆): δ (ppm) δ 10.41 (s, 1H), 9.72 (s, 1H), 9.31 (s, 1H), 8.92 (s, 1H), 7.90 (d, J = 7.5 Hz, 2H), 7.68 (d, J = 5.6 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.16 (t, J = 7.1 Hz, 1H), 4.32 (s, 1H), 1.41 (d, J = 7.0 Hz, 3H); ¹³C NMR (214 MHz, CD₃CN): δ (ppm) 182.78, 173.06, 169.63, 139.81, 134.12, 133.05, 129.51,

129.34, 128.45, 126.59, 125.61, 51.15, 16.76; HRMS (ESI): calcd for $[C_{17}H_{18}N_4NaO_2S]^+$: 365.1048, found: 365.1043.

D-1H: ¹H NMR (500 MHz, DMSO-*d*₆): δ (ppm) 10.40 (s, 1H), 9.72 (s, 1H), 9.31 (s, 1H), 8.92 (s, 1H), 7.90 (d, J = 7.8 Hz, 2H), 7.68 (d, J = 6.0 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.5 Hz, 2H), 7.35 (t, J = 7.6 Hz, 2H), 7.16 (t, J = 6.8 Hz, 1H), 4.33 (s, 1H), 1.41 (d, J = 7.1 Hz, 3H); ¹³C NMR (214 MHz, CD₃CN): δ (ppm) 182.79, 173.06, 169.63, 139.81, 134.13, 133.06, 129.51, 129.34, 128.45, 126.59, 125.61, 51.16, 16.76; HRMS (ESI): calcd for [C₁₇H₁₈N₄NaO₂S]⁺: 365.1048, found: 365.1040.

Scheme S2. General procedures for the syntheses of 2I

2I: To a CH₃CN solution (20 mL) of **HPhAN₂H₃** (0.40 g, 1.93 mmol), 4-iodophenyl isocyanate (0.55 g, 2.11 mmol) was added, and the mixture was stirred for 24 h at room temperature. After concentration in vacuum, the solid was washed by Et₂O, and then recrystallized in CH₃CN and dried in vacuum to obtain **2I** (0.71 g, yield 79%).

L-**2I**: ¹H NMR (500 MHz, DMSO-*d*₆): δ (ppm) 10.43 (s, 1H), 9.85 (s, 1H), 9.33 (s, 1H), 8.95 (s, 1H), 7.91 (d, *J* = 7.4 Hz, 2H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.65 – 7.52 (m, 3H), 7.50 (t, *J* = 7.5 Hz, 2H), 4.30 (s, 1H), 1.41 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (214 MHz, DMSO-*d*₆): δ (ppm) 179.99, 171.92, 167.68, 138.99, 136.82, 133.18, 131.77, 128.31, 127.65, 126.01, 89.18, 49.25, 16.48; HRMS (ESI): calcd for [C₁₇H₁₇IN₄NaO₂S]⁺: 491.0015, found: 491.0012.

D-**2I**: ¹H NMR (500 MHz, DMSO-*d*₆): δ (ppm) 10.43 (s, 1H), 9.84 (s, 1H), 9.33 (s, 1H), 8.95 (s, 1H), 7.91 (d, J = 7.4 Hz, 2H), 7.70 (d, J = 8.2 Hz, 2H), 7.66 – 7.52 (m, 3H), 7.49 (t, J = 7.4 Hz, 2H), 4.31 (s, 1H), 1.41 (d, J = 6.8 Hz, 3H); ¹³C NMR (214 MHz, DMSO-*d*₆): δ (ppm) 180.02, 171.97, 167.73, 139.01, 136.85, 133.18, 131.79, 128.33, 127.67, 126.05, 89.21, 49.31, 16.51; HRMS (ESI): calcd for [C₁₇H₁₇IN₄NaO₂S]⁺: 491.0015, found: 491.0013.

Scheme S3. General procedures for the syntheses of 3I

3I: To a CHCl₃ solution (40 mL) of ethyl phenylalaninate hydrochloride (**FOEt·HCl**, L- or D-, 2.30 g, 10.0 mmol) and Et₃N (3.0 mL), 4-iodobenzoyl chloride (**IPhCOCl**, 2.93 g, 11.0 mmol) was added, and the mixture was stirred for 12 h at room temperature. The solvent was removed by evaporated in vacuo. The solid residue was dissolved in EtOAc and then the solution was washed successively with 1% NH₃·H₂O, 1% HCl and saturated NaCl solutions. The solution was then dried over anhydrous Na₂SO₄ and concentrated in vacuo, generating solid product **IPhFOEt** (3.46 g, yield 82%). Excess aqueous hydrazine (85%, 6.0 mL) was added to **IPhFOEt** in EtOH (40 mL) and the mixture was refluxed for 24 hours. The solvent was removed by evaporated in vacuo, and the crude product was washed with CH₃CN several times to afford white solid product **IPhFN₂H₃** (2.85g, yield 85%). To a CH₃CN solution (30 mL) of **IPhFN₂H₃** (0.50 g, 1.22 mmol), excess phenyl isocyanate (0.5 mL) was added, and the mixture was stirred for 24 h at room temperature. After filtration, the solid was washed by CH₃CN and Et₂O, and then dried in vacuum to obtain **3I** (0.57 g, yield 86%).

L-**3I**: ¹H NMR (500 MHz, DMSO-*d*₆): δ (ppm) 10.44 (s, 1H), 9.77 (s, 1H), 9.21 (s, 1H), 8.94 (s, 1H), 7.85 (d, *J* = 8.2 Hz, 2H), 7.58 (t, *J* = 7.2 Hz, 4H), 7.34 (dd, *J* = 13.3, 5.6 Hz, 4H), 7.27 (t, *J* = 7.5 Hz, 2H), 7.17 (dd, *J* = 16.1, 7.5 Hz, 2H), 4.60 (s, 1H), 3.23 (s, 1H), 3.14 – 3.02 (m, 1H); ¹³C NMR (151 MHz, DMSO-*d*₆): δ (ppm) 180.26, 170.78, 166.84, 139.01, 137.83, 137.20, 132.97, 129.48, 129.24, 128.25, 126.44, 125.03, 124.58, 99.48, 54.62, 36.03; HRMS (ESI): calcd for [C₂₃H₂₁IN₄NaO₂S]⁺: 567.0328, found: 567.0327.

D-**3I**: ¹H NMR (500 MHz, DMSO-*d*₆): δ (ppm) 10.45 (s, 1H), 9.79 (s, 1H), 9.21 (s, 1H), 8.97 (s, 1H), 7.86 (d, *J* = 8.2 Hz, 2H), 7.57 (t, *J* = 6.9 Hz, 4H), 7.34 (dd, *J* = 15.8, 7.9 Hz, 4H), 7.27 (t, *J* = 7.6 Hz, 2H), 7.18 (dd, *J* = 16.8, 7.8 Hz, 2H), 4.58 (s, 1H), 3.22 (s, 1H), 3.11 – 3.02 (m, 1H); ¹³C NMR (126 MHz, DMSO-*d*₆): δ (ppm) 180.39, 170.69, 166.69, 138.98, 137.80, 137.14, 132.97, 129.42, 129.18, 128.19, 126.38, 124.91, 124.40, 99.33, 54.47, 36.07; HRMS (ESI): calcd for [C₂₃H₂₁IN₄NaO₂S]⁺: 567.0328, found: 567.0323.

2. Experimental data

Compound reference	L -1I ^a	D -1I ^{<i>a</i>}
Empirical formula	$C_{17}H_{17}IN_4O_2S$	$C_{17}H_{17}IN_4O_2S$
Formula weight	468.30	468.30
Temperature/K	100.1(2)	99.9(7)
Crystal system	orthorhombic	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$
a/Å	4.65650(10)	4.65680(10)
b/Å	16.8753(3)	16.8731(4)
c/Å	22.9925(4)	22.9659(6)
α/°	90	90
β/°	90	90
γ/°	90	90
Volume/Å ³	1806.75(6)	1804.54(7)
Z	4	4
$\rho_{calc}g/cm^3$	1.722	1.724
μ/mm^{-1}	15.167	15.186
F(000)	928.0	928.0
Crystal size/mm ³	$0.42 \times 0.26 \times 0.22$	$0.26 \times 0.24 \times 0.16$
Radiation	$CuK\alpha (\lambda = 1.54184)$	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	6.498 to 121.986	6.5 to 153.93
Index ranges	$-5 \le h \le 3, -19 \le k \le 19, -25 \le l \le 10$	$-5 \le h \le 5, -19 \le k \le 21, -26 \le 1$
	26	≤ 27
Reflections collected	5001	6214
Independent reflections	2638 [$R_{int} = 0.0522, R_{sigma} = 0.06271$]	3149 [$R_{int} = 0.0528$, $R_{sigma} = 0.0616$]
Data/restraints/parameters	2638/150/227	3149/0/227
Goodness-of-fit on F ²	1.156	1.145
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0585, wR_2 = 0.1556$	$R_1 = 0.0377, wR_2 = 0.0930$
Final R indexes [all data]	$R_1 = 0.0615, wR_2 = 0.1741$	$R_1 = 0.0449, wR_2 = 0.1190$
Largest diff. peak/hole / e Å ⁻³	1.36/-1.41	1.67/-1.11
Flack parameter	-0.007(11)	-0.013(7)
CCDC number	1998162	1998163

Table S1. Crystallographic data for L-1I and D-1I

^{*a*} Grown in *i*PrOH solution via slow evaporation.

Crystal structure	L-11	D- 1I	L-1H	D-1H	rac-1H@L-1H	rac-1H@D-1H
ϕ_{i+1} / °	-58.77	57.81	-55.64	55.85	60.58	60.58
ψ_{i+1} / °	135.97	-136.46	141.58	-141.66	134.91	-134.91
ϕ_{i+2} / °	70.72	-69.07	67.56	-67.90	76.33	-76.33
$\psi_{i+2} / {}^{\mathbf{o}}$	8.37	-9.99	14.98	-14.86	2.08	-2.08
Type ^{S2}	II	II'	II	II'	II	II'
Length ^{<i>a</i>} / Å	2.117	2.147	2.392	2.387	2.109	2.109
Angle ^b / °	149.40	147.96	137.94	137.89	148.90	148.90
E _{nb} ^c / kJ mol ⁻¹	-11.8	-10.9	-5.76	-5.85	-12.7	-11.8

Table S2. Torsions, types of β -turns and geometrical parameters and calculated interaction energies of intramolecular ten-membered ring hydrogen bonds revealed by the X-ray crystal structures

^{*a*} Distance of H^d...O^e. ^{*b*} Angle of NH^dO^e. Labels of atoms are shown in Figure 2a. ^{*c*} Interaction energy of intramolecular N–H^d...^eO=C hydrogen bond analyzed by Quantum Theory of Atoms In Molecules (QTAIM). Method: B3LYP DFT with the 6-311G** basis set for C, H, O, N, S, and LANL2DZ for I atoms, POP=NBO.

 Table S3. Geometrical parameters and calculated interaction energies of intermolecular interactions revealed by the X-ray crystal structures

Crystal	Interaction	Length / Å	Angle / °	$\Delta E^{\ c}$ / kJ mol ⁻¹
	N–H ^{bf} O=C	2.034	157.77 (∠NHO) 150.49 (∠HOC)	-107.5
L-11	$C-I\cdots\pi$	3.896 ^a	163.67 ^{<i>b</i>}	-31.59
	N–H ^a …S=C	2.623	163.65 (∠NHS) 124.08 (∠HSC)	-63.30
, 1U	N–H ^{bf} O=C	2.113	152.71 (∠NHO) 151.27 (∠HOC)	-103.59
L-IN	$N-H^{a}-S=C$	2.669	153.67 (∠NHS) 118.10 (∠HSC)	-53.24
	N–H ^{af} O=C	2.264	150.67 (∠NHO) 157.93 (∠HOC)	-60.91
rao 1 U	$N-H^c\cdots S=C$	2.471	167.44 (∠NHS) 112.02 (∠HSC)	-50.48 ^d
740-111	$N – H^b \cdots^i O – H^h$	1.977	175.67 (∠NHO) 109.57 (∠HOC)	-26.05
	$^{i}O-H^{h}$ S=C	2.468	145.91 (∠OHS) 126.97 (∠HSC)	-18.84

^{*a*} Distance of iodine to the centroid of benzene ring. ^{*b*} Angle of C, I and the centroid of benzene ring. ^{*c*} Method: WB97XD DFT with the 6-31+G(d,p) basis set for C, H, O, N, S, and LANL2DZ for I atoms. ^{*d*} Interaction energy of double N–H^c...S=C hydrogen bonds.

Figure S1. (a) Intermolecular N–H^{a...}S=C hydrogen bond (HB, dashed gray line) along *b*-axis of L-1I crystal. (b) Intermolecular N–H^{b...f}O=C hydrogen bond (HB, dashed orange line) along *a*-axis of L-1I crystal. (c) Sheet-like 2D assembly from L-1I within *ab* plane, supported by N–H^{a...}S=C hydrogen bonds (dashed gray lines) along *b*-axis and N–H^{b...f}O=C hydrogen bonds (dashed orange lines) along *a*-axis. For clarity, –CH protons are omitted. The thick arrows indicate the direction of *N*- to *C*-terminus of L-1I along the strand structure.

Figure S2. Intermolecular C–I··· π halogen bond (XB, dashed black line) along *c*-axis of L-**1I** crystal. For clarity, –CH protons are omitted.

Table S4. Natural bond orbital (NBO) analysis^{*a*} for intermolecular C–I··· π interaction in L-**1I** dimer

Interaction	Donor Acceptor		$E^{(2)} (kJ mol^{-1})^b$
	BD(2)(C ³⁶ –C ³⁸)		1.13
$C-I\cdots\pi$	BD(1)(C ³⁸ –C ⁴⁰)	$\sigma^{*}(I^{84}-C^{54})$	0.25
	$LP(1)(C^{40})$		9.24

^{*a*} Method: WB97XD DFT with the 6-31+G(d,p) basis set for C, H, O, N, S, and LANL2DZ for I atoms. POP = NBO. ^{*b*} The second-order perturbation energy.

Table S5. Topological parameters (ρ and $\nabla^2 \rho$) of the intermolecular critical point 29 in L-**1I** dimer for C–I··· π halogen bond and the calculated interaction energy (E_{nb}) analyzed by Quantum Theory of Atoms In Molecules (QTAIM)

Critical point	Contact	ρ	$\nabla^2 \rho$	Enb (kJ mol ⁻¹)
29	$C - I \cdots \pi$	0.008	0.025	-6.76

Figure S3. Noncovalent interaction (NCI) surfaces (-0.05 to 0.05 a.u.) for representative $C-I\cdots\pi$ halogen bond in L-**1I** dimer. Color code: red for repulsive, yellow for weakly repulsive, green for weakly attractive, and blue for strongly attractive forces.

Figure S4. Crystal structures of L-**1I** and D-**1I**, showing βII and βII'-turns, respectively. For clarity, –CH protons are omitted.

Figure S5. (a) Strand-like 1D assembly from D-**1I** molecules along *b*-axis via intermolecular $N-H^{a...}S=C$ hydrogen bonds (dashed gray lines). (b) $N-H^{b...f}O=C$ hydrogen bonds (dashed orange lines) along *a*-axis link parallel strand-like 1D assemblies into a sheet-like 2D assembly within *ab* plane. For clarity, -CH protons are omitted, in the strand and sheet-like assemblies, iodophenyl and phenyl rings are also omitted. The thick arrows indicate the direction of *N*- to *C*-terminus of D-**1I** along the strand structure.

Figure S6. Mirror symmetric 3D superstructures from L-1I (left) and D-1I (right), consisting of helical and sheet-like assemblies. While *P*-helix is formed in L-1I crystal, *M*-helix is formed in D-1I crystal, both supported by C–I··· π halogen bonds and N–H^b···^fO=C hydrogen bonds. For clarity, –CH protons are omitted.

No.	1	2	3	4	5
Space group	P212121	P212121	$P2_{1}2_{1}2_{1}$	P212121	$P2_{1}2_{1}2_{1}$
a/Å	4.65582(4)	4.65460(10)	4.65380(10)	4.65500(10)	4.65480(10)
b/Å	16.87090(15)	16.8691(2)	16.8730(2)	16.8779(2)	22.9809(6)
c/Å	22.9733(2)	22.9657(3)	22.9596(3)	22.9656(2)	16.8815(4)
$\alpha/^{\circ}$	90	90	90	90	90
β/°	90	90	90	90	90
$\gamma/^{\circ}$	90	90	90	90	90
Flack parameter	-0.007(5)	0.022(4)	-0.019(6)	-0.009(13)	0.072(6)
Structure	D- 1I	D-11	L- 1I	D- 1I	L- 1I

Table S6. Crystallographic data for five selected single crystals of rac-11 grown in iPrOH

Figure S7. HPLC traces of selected single *rac*-**11** crystals grown in *i*PrOH. Column: Chiralpak@ID (250×4.6 mm). Mobile phase: *n*-hexane/2-propanol = 47:53 (v/v). Flow rate: 1.0 mL/min. Wavelength: UV 270 nm.

Figure S8. Concentration-dependent SEM images of air-dried samples on platinum-coated silicon wafers of L-1I (a) and *rac*-1I (b) in *i*PrOH.

Compound reference	L- 1H ^{<i>a</i>}	D- 1H ^{<i>a</i>}	<i>rac</i> - 1H ^{<i>b</i>}
Empirical formula	$C_{17}H_{18}N_4O_2S$	$C_{17}H_{18}N_4O_2S$	C ₁₇ H ₁₈ N ₄ O ₂ S, CH ₄ O
Formula weight	342.41	342.41	374.45
Temperature/K	100.01(10)	99.9(7)	100.00(10)
Crystal system	orthorhombic	orthorhombic	monoclinic
Space group	P212121	$P2_{1}2_{1}2_{1}$	$P2_1/n$
a/Å	4.7117(2)	4.70400(10)	11.7516(2)
b/Å	15.8669(8)	15.8512(3)	8.56240(10)
c/Å	22.3016(12)	22.2569(4)	18.9290(3)
α/°	90	90	90
β/°	90	90	91.2740(10)
γ/°	90	90	90
Volume/Å ³	1667.27(14)	1659.56(6)	1904.20(5)
Z	4	4	4
$ ho_{calc}g/cm^3$	1.364	1.370	1.306
μ/mm^{-1}	0.212	1.882	1.724
F(000)	720.0	720.0	792.0
Crystal size/mm ³	$0.22 \times 0.11 \times 0.11$	$0.28 \times 0.22 \times 0.18$	$0.20 \times 0.16 \times 0.12$
Radiation	MoK α ($\lambda = 0.71073$)	CuK α (λ = 1.54184)	CuK α (λ = 1.54178)
2Θ range for data collection/°	7.308 to 50	6.846 to 153.794	8.77 to 148.608
Inday ranges	-5 \leq h \leq 4, -13 \leq k \leq	-4 \leq h \leq 5, -20 \leq k \leq	$-14 \le h \le 13, -10 \le k$
index ranges	$18, -17 \le l \le 26$	$16, -25 \le l \le 26$	$\leq 8, -21 \leq l \leq 23$
Reflections collected	4598	6078	11530
Independent reflections	2876 [$R_{int} = 0.0223$,	$3069 [R_{int} = 0.0476,$	3748 [$R_{int} = 0.0346$,
independent reflections	$R_{sigma} = 0.0415$]	$R_{sigma} = 0.0559]$	$R_{sigma} = 0.0335$]
Data/restraints/parameters	2876/0/217	3069/0/218	3748/0/238
Goodness-of-fit on F ²	1.065	1.133	1.057
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0329,$	$R_1 = 0.0462,$	$R_1 = 0.0381,$
	$wR_2 = 0.0727$	$wR_2 = 0.1142$	$wR_2 = 0.1019$
Final R indexes [all data]	$R_1 = 0.0377,$	$R_1 = 0.0536,$	$R_1 = 0.0407,$
i mai it maches [an aaa]	$wR_2 = 0.0759$	$wR_2 = 0.1388$	$wR_2 = 0.1046$
Largest diff. peak/hole / e Å ⁻³	0.31/-0.30	0.71/-0.38	0.29/-0.39
Flack parameter	0.08(5)	0.025(16)	/
CCDC number	1998159	1998160	2068984

Table S7. Crystallographic data for L-1H, D-1H and *rac*-1H

^{*a*} Grown in *i*PrOH solution via slow evaporation. ^{*b*} Grown in CH₃OH solution via slow evaporation.

Figure S9. Crystal structures of L-**1H** and D-**1H**, showing β II and β II'-turns, respectively. For clarity, –CH protons are omitted.

Figure S10. (a) Strand-like 1D assembly from L-**1H** molecules along *b*-axis via intermolecular $N-H^{a...}S=C$ hydrogen bonds (dashed gray lines). (b) $N-H^{b...f}O=C$ hydrogen bonds (dashed orange lines) along *a*-axis link parallel strand-like 1D assemblies into a sheet-like 2D assembly within *ab* plane. For clarity, –CH protons are omitted, in the strand and sheet-like assemblies, phenyl rings are also omitted. The thick arrows indicate the direction of *N*- to *C*-terminus of L-**1H** along the strand structure.

Figure S11. Calculated dipole moment (9.33 D) of L-**1H**, indicating that L-**1H** is polar, which can afford dipole-dipole interactions to the overall van der Waals interactions exhibited in L-**1H** crystal. Method: B3LYP DFT with the 6-311G** basis set.

Figure S12. (a) Strand-like 1D assembly from D-**1H** molecules along *b*-axis via intermolecular N-H^a...S=C hydrogen bonds (dashed gray lines). (b) N-H^b...fO=C hydrogen bonds (dashed orange lines) along the *a*-axis link parallel strand-like 1D assemblies into a sheet-like 2D assembly within *ab* plane. For clarity, -CH protons are omitted, in the strand and sheet-like assemblies, phenyl rings are also omitted. The thick arrows indicate the direction of *N*- to *C*-terminus of D-**1H** along the strand structure.

Figure S13. Mirror symmetric 3D superstructures from L-1H (left) and D-1H (right), consisting of quasi-helical and sheet-like assemblies. While quasi-*P*-helix is formed in L-1H crystal, quasi-*M*-helix is formed in D-1H crystal, both supported by N–H^{b...f}O=C hydrogen bonds and van der Waals interactions. For clarity, –CH protons are omitted.

Figure S14. Solvent accessibility of -NH protons in L-**1I** and L-**1H** at 25 °C. Solvent accessibility is given as δ_{NH} in DMSO- d_6 minus δ_{NH} in CD₃CN solutions.^{S3} [L-**1I**] = [L-**1H**] = 4 mM. Solvent accessibilities of the thioureido $-NH^d$ protons that are involved in the intramolecular hydrogen bonding are almost the same, suggesting that the strength of β -turn structure in L-**1I** and L-**1H** is comparable in the solution phase.

Figure S15. Absorption (a) and CD (b) spectra of L-1I and L-1H crystals.

No.	1	2	3	4	5
Space group	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	P212121	P212121	P212121
a/Å	4.69890(10)	4.70300(10)	4.69510(10)	4.69330(10)	4.69942(4)
b/Å	15.8791(4)	15.8556(2)	15.8762(3)	15.8695(4)	15.85612(15)
c/Å	22.2710(6)	22.2560(3)	22.2731(5)	22.2403(5)	22.24912(19)
$\alpha/^{\circ}$	90	90	90	90	90
β/°	90	90	90	90	90
$\gamma/^{\circ}$	90	90	90	90	90
Flack parameter	-0.485(9)	0.350(7)	-0.478(12)	-0.440(10)	-0.194(5)
Structure	L-1H	L-1H	D- 1H	L- 1H	L-1H

Table S8. Crystallographic data for five single crystals of rac-1H grown in iPrOH

Figure S16. Calculated and experimental XRPD patterns of L-1H crystals and experimental XRPD of *rac*-1H crystals grown in *i*PrOH. The identical XRPDs of L-1H and *rac*-1H crystals indicate that *rac*-1H forms racemic conglomerates in *i*PrOH.

Table S9. Determined ee values for five selected single crystals of rac-1H grown in iPrOH^a

No.	1	2	3	4	5
ee	9.2%	-58%	8.6%	-4.8%	2.0%

^{*a*} Column: Chiralpak@ID (250×4.6 mm). Mobile phase: *n*-hexane/2-propanol = 47:53 (v/v). Flow rate: 1.0 mL/min. Wavelength: UV 270 nm.

Figure S17. Schematic representation of racemic conglomerates formed from *rac*-**11** in *i*PrOH (a), epitaxial racemic conglomerates formed from *rac*-**1H** in *i*PrOH (b),^{S4,S5} and racemic compounds formed from *rac*-**1H** in CH₃OH.

Figure S18. 2D Supramolecular structure in the *bc* plane of *rac*-**1H** crystal grown in CH₃OH. (a) Crystal structure of *rac*-**1H**@L-**1H**, showing a β II-turn. (b) N–H^{a...f}O=C hydrogen bond (HB, dashed orange line) between adjacent *rac*-**1H**@L-**1H** molecules along the *b*-axis. (c) Supramolecular *P*-helix from *rac*-**1H**@L-**1H** molecules along the *b*-axis via N–H^{a...f}O=C hydrogen bonds (dashed orange lines). (d) Double N–H^{c...}S=C hydrogen bonds (dashed pink lines)

between adjacent *rac*-**1H**@L-**1H** and *rac*-**1H**@D-**1H** molecules along the *c*-axis. (e) 2D superstructure of alternative *P*- and *M*-helices linked by double N–H^c...S=C hydrogen bonds (dashed pink lines). For clarity, all –CH protons are omitted. In (e), *rac*-**1H**@L-**1H** molecules are depicted in blue, while *rac*-**1H**@D-**1H** molecules are depicted in red, phenyl rings are omitted for clarity.

Figure S19. Supramolecular *P*-helix formed from *rac*-**1H**@L-**1H** (left) and *M*-helix formed from *rac*-**1H**@D-**1H** (right) along the *b*-axis in *rac*-**1H** crystal that grown in CH₃OH. For clarity, –CH protons are omitted.

Figure S20. X-ray 3D superstructure of *rac*-**1H** crystal that grown in CH_3OH . The heterochiral *bc* planes stack via van der Waals interactions in parallel manner along the *a*-axis. For clarity, –CH protons are omitted.

Figure S21. (a) Embedment of solvent CH₃OH molecules in *rac*-**1H** crystal. (b) Along the *b*-axis, solvent CH₃OH molecules afford intermolecular hydrogen bonds ($^{i}O-H^{h}...S=C$ and N-H^{b...i}O-H^h hydrogen bonds) to stabilize the supramolecular *P*-helix from *rac*-**1H**@L-**1H** and *M*-helix from *rac*-**1H**@D-**1H**. For clarity, -CH protons are omitted.

Figure S22. Calculated and experimental XRPD patterns of L-1H crystals and experimental XRPD of *rac*-1H crystals grown in CH₃OH. The different XRPDs of L-1H and *rac*-1H crystals indicate that *rac*-1H forms racemic compounds in CH₃OH.

Figure S23. HPLC traces of one single *rac*-**1H** crystal grown in CH₃OH. Column: Chiralpak@ID ($250 \times 4.6 \text{ mm}$). Mobile phase: *n*-hexane/2-propanol = 47:53 (v/v). Flow rate: 1.0 mL/min. Wavelength: UV 270 nm.

3. ¹H NMR and ¹³C NMR spectra

¹H NMR of L-**11** (500 MHz, DMSO-*d*₆)

¹H NMR of D-**11** (500 MHz, DMSO-*d*₆)

¹H NMR of L-1H (500 MHz, DMSO-*d*₆)

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 Chemical Shift (ppm) ¹H NMR of D-**1H** (500 MHz, DMSO-*d*₆)

¹³C NMR of D-1H (214 MHz, CD₃CN)

 210
 190
 170
 150
 130
 110
 90
 80
 70
 60
 50
 40
 30
 20
 10
 0

 Chemical Shift (ppm)

 210
 190
 170
 150
 130
 110
 90
 80
 70
 60
 50
 40
 30
 20
 10
 0

 Chemical Shift (ppm)

¹H NMR of D-2I (500 MHz, DMSO-*d*₆)

110 90 80 Chemical Shift (ppm)

 210
 190
 170
 150
 130
 110
 90
 80
 70
 60
 50
 40
 30
 20
 10
 -10

 Chemical Shift (ppm)

4. References

S1. Yan, X.; Zou, K.; Cao, J.; Li, X.; Zhao, Z.; Li, Z.; Wu, A.; Liang, W.; Mo, Y.; Jiang, Y. Single-handed supramolecular double helix of homochiral bis(*N*-amidothiourea) supported by double crossed C–I···S halogen bonds. *Nat. Commun.* **2019**, *10*, 3610.

S2. Koch, O. Advances in the Prediction of Turn Structures in Peptides and Proteins. *Mol. Inf.* **2012**, *31*, 624-630.

S3. Copeland, G. T.; Jarvo, E. R.; Miller, S. J. Minimal Acylase-Like Peptides. Conformational Control of Absolute Stereospecificity. *J. Org. Chem.* **1998**, *63*, 6784-6785.

S4. van Enckevort, W. J. P. On the Crystallization of Epitaxial Racemic Conglomerates. *J. Phys. Chem. C* **2010**, *114*, 21593-21604.

S5. Spix, L.; Alfring, A.; Meekes, H.; van Enckevort, W. J. P.; Vlieg, E., Formation of a Salt Enables Complete Deracemization of a Racemic Compound through Viedma Ripening. *Cryst. Growth Des.* **2014**, *14*, 1744-1748.