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Experimental Section

Materials Preparation: Base electrolyte with 1.0 M LiPF6 in EC/EMC (3:7) was purchased 

from Suzhou Duoduo Chemical Technology Co., Ltd., China. F-Gr with 1 and 3 mg mL-1 were 

directly dissolved into base electrolyte. All electrolytes were stored in a glove box under Ar 

environment and utilized without further purification. The cathode slurries were prepared by 

mixing the cathode materials, conductive carbon and poly(vinylidene) fluoride (PVDF) with a 

mass ration of 8:1:1 in N-methyl-2-pyrolidone (NMP) solvent. The loading of active material on 

the cathode electrode is around 5 mg cm-2.

Electrochemical measurements:  In this work, all testing cells were used CR-2032 coin-type 

and assembled in Ar-filled glove box. The cyclic voltammetry (1.0 and 10.0 mV s-1), linear sweep 

voltammetry (0.1 mV s-1) measurement and electrochemical impedance spectroscopy (EIS) test 

were carried out on a CHI660E electrochemical workstation (Chenhua, China). A frequency range 

of 105 Hz to 10-2 Hz with an amplitude of 5 mV was applied for EIS test of cycled Li/Li symmetric 

cells. The galvanostatic cycling measurement were conducted on a Neware battery testing system 

(CT-4008T-5 V10 mA-164, Shenzhen, China) at room temperature. Before each charge/discharge 

measurement, the cells were kept on open circuit for 8~10 hours.

Characterizations: The Scanning Electron Microscopy (SEM) characterization was applied 

to observe the morphological difference of Li-metal anode between base and F-Gr contained 

electrolyte during continuous cycling in Li/Li symmetrical cells. It was conducted on Zeiss 

GeminiSEM 500 in the Tan Kah Kee Innovation Laboratory (Fujian Province), and corresponding 

images were obtained with an accelerating voltage of 1 kV. The tested cycled samples of Li-metal 

were rinsed by DMC to possibly wash off and remove the salt and residue solvent from the Li-

metal surface, and evaporated in a vacuum chamber for around 30 min. Then samples can be 
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transferred to the SEM sample loading chamber via a vacuum transfer cassette. The X-ray 

photoelectron spectroscopy (XPS) characterizations was performed on the Thermo Fisher 

Scientific K-Alpha spectrometer for surface analyzations of cycled Li-metal. Depth profiling was 

realized by using Ar+ sputtering. All XPS spectra were calibrated with the reference C-C peak at 

binding energy for 284.5 eV. Time-of-Flight secondary ion mass spectrometry (TOF-SIMS) 

measurement was conducted in the Tan Kah Kee Innovation Laboratory to investigate the specific 

components/compositions on cycled Li-metal surface, which is equipped with a 30 keV Bi3
+ 

primary ion gun and a 1 keV Cs sputter gun for negative ion mode. For 2D chemical mapping and 

3D depth profiling, the sputtering and analysis areas were set as 500 X 500 μm2 and 100 X 100 

μm2, respectively.

3



Figure S1. The ball and stick models of the F-Gr by (a) front view and (b) side view.
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Figure S2. SEM characterizations of F-Gr morphology at different magnifications.
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Figure S3. Cycling stability of Li/Li symmetric cells with electrolyte containing different 

concentrations of F-Gr at a current density of 0.5 mA cm-2.
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Figure S4. Magnified SEM images of cycled Li-metal in (a) base and (b) F-Gr-contained 

electrolytes after 50 cycles at 1.0 mA cm-2 with 1.0 mAh cm-2.
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Figure S5. SEM images of Li deposition morphology on Cu substrate in LiPF6-EC/EMC 
electrolyte (a) without and (b) with F-Gr (0.01 mA, 20 h). 
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Figure S6. Cycling performance of Li/Li symmetric cells in ether-based electrolyte with/without 
F-Gr at a current density of 0.5 mA cm-2.
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Figure S7. SEM images of cycled Li-metal in (a) BASE and (b) F-Gr-contained electrolytes 
after 50 cycles at 0.5 mA cm-2 with 0.5 mAh cm-2.

Typical ether-based electrolyte, such as 1.0 M LiTFSI in TEGDME, is studied as “BASE 
electrolyte” to explore whether F-Gr can still protect Li-metal anode in ether-based electrolyte. 
Then Li/Li symmetrical cells are preferentially assembled to evaluate the effect of F-Gr on the 
cycling performance of batteries. As represented in Figure S6, longer lifespan and better cycling 
stability of Li/Li symmetrical cells can be realized in F-Gr-contained electrolyte than that in BASE 
(ether-based) electrolyte. After 50 cycles, significant dendrite growth can be observed on the Li-
metal surface in BASE electrolyte as exhibited in Figure S7, which can accelerate the performance 
deterioration of Li/Li symmetrical cells (Figure S6, gray trace). However, Li-metal with relatively 
smooth and flat surface is well-preserved after 50 cycles in F-Gr-contained electrolyte, indicating 
that the introduction of F-Gr in ether-based electrolyte can effectively suppress detrimental 
dendrite growth and significantly enhance the cycling stability of Li/Li symmetrical cells. 
Therefore, not only ester-based electrolyte (1.0 M LiPF6 in EC/EMC in the manuscript) but also 
ether-based electrolyte (1.0 M LiTFSI in TEGDME), F-Gr can effectively suppress undesirable 
dendrite growth and improve the cycling performance of Li/Li symmetrical cells.
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Figure S8. F 1s spectra for Li-metal cycled in base or F-Gr-contained electrolyte with a 

sputtering depth of 0, 5, 20 nm.  The Li-metal is retrieved from Li/Li symmetrical cell after 50 

cycles, which is cycled at 1.0 mA cm-2 with a fixed plating capacity of 1.0 mAh cm-2.
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Figure S9. TOF-SIMS depth profiles with intensity of cycled Li-metal (1 mA cm-2, 1 mAh cm-2, 

50 cycles) with (a) base electrolyte and (b) F-Gr-contained electrolyte in spectrometry negative-

ion mode, respectively.
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Figure S10. The intuitive 2D plane reconstructed images in XZ direction of typical ion fragments.
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Figure S11. TOF-SIMS 3D render images of Li-metal surface after electrochemical cycling 

process in the base and F-Gr-contained electrolyte.
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Figure S12. CV curves of Li/Cu half cells with base (gray trace) and  F-Gr-contained (blue trace) 

electrolytes during the second cycle with a scan rate of 1 mV s-1.
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Figure S13. CV curves of Li/Cu half cells with base (gray trace) and  F-Gr-contained (blue trace) 

electrolytes during (a) the first and (b) second cycle with a scan rate of 10 mV s-1.
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Figure S14. EIS curve in EC/EMC-based electrolyte (a) without and (b) with F-Gr for Li/Li 
symmetrical cells (25, 50, 100 cycles).

17



Figure S15. Voltage decay profiles of charged Li/NCM811 cells in base and F-Gr-contained 
electrolytes (base: gray trace, F-Gr-contained electrolyte: blue trace).

Self-discharge phenomena can be represented by the variation of the open-circuit voltage of 

battery under certain condition. Herein, to describe and analyze the self-discharge behavior of 

Li/NCM cells with base and F-Gr-contained electrolyte, the experiment to in-situ monitoring the 

open-circuit voltage during open circuits is conducted. After charging to 4.3 V, the open-circuit 

voltages of Li/NCM811 cells are monitored during resting for 100 hours. Variations in the open-

circuit voltage of the charged cells are measured as a function of resting time, which are exhibited 

in Figure S15. In F-Gr-contained electrolyte, the descent rate of Li/NCM811 cell’s voltage is 

significantly lower than that in base electrolyte, indicating a self-discharge suppression by F-Gr. 

Generally, the self-discharge behavior can be mostly ascribed to the decomposition of electrolytes 

in typical lithium-ion batteries. The preferential oxidation of F-Gr additive can effectively prevent 
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detrimental EC/EMC-based electrolyte decomposition, resulting in the distinctly suppressed self-

discharge behavior of Li/NCM811 cell.
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