Chromium Cobaltite Based Ternary Composite as Efficient Electrode

Material for Hybrid Supercapacitors with Theoretical Investigation

Simran Kour, Pawanpreet Kour, A. L. Sharma*

Department of Physics, Central University of Punjab, Bathinda, Punjab, India-151401

*Corresponding author: <u>alsharma@cup.edu.in</u>

Supporting Information (SI)

1. Electrode preparation method

The electrodes were prepared by blending the synthesized active material, PVDF (binder), and carbon black (conductive element) in a ratio of 8:1:1 to get consistent slurry with the addition of N-Methyl-2-pyrrolidone (NMP). Nickel foam with area of 1 cm² was then coated with this slurry and dried at 60 $^{\circ}$ C overnight. The separator (Whatman paper) wetted by 6M KOH electrolyte was sandwiched between the two electrodes (cathode and anode) and pressed using a hydraulic press to get the desired cell configuration.

2. Electrochemical measurements

The capacitive response of the electrode material corresponding to a voltage window of -1 to +1V was evaluated from CV and GCD in 2-E configuration. The EIS analysis was carried out for 10^{5} -0.1 Hz of frequency at open-circuit potential. For asymmetric supercapacitor, the voltage range was 0-1.6 V. The Formulae used for determining various parameters such as specific capacitance, energy density, and power density has been provided in **Table S1**.

Parameter	Formula	Terms used
Bragg's law	$2d\sin\theta = n\lambda$	'2 θ 'is bragg's diffraction angle, 'd' is inter-planar spacing, λ is the
		wavelength of X-ray, $'n'$ is an
		integer,.
Interplanar spacing	$d = \frac{1}{$	(<i>a</i> , <i>b</i> , <i>c</i>) are lattice parameters of the
	$\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$	crystal, (hkl) are miller indices of
		lattice plane.
Crystallite size, D	$D = \frac{K \cdot \lambda}{1 - 1 - 1}$	' ω ' is the FWHM, ' 2θ ' is bragg's
(Schherrer equation)	$\omega \times \cos \theta$	diffraction angle, K is a constant, λ is
		the wavelength of X-ray.
Specific capacitance, C_{sp} for	IdV	'I' is the current, ' m ' is the mass of
single electrode (from CV)	$C_{sp} = \frac{S}{m \times v \times dV}$	active material, dV is the potential
		window, ν' is the scan rate.
Specific capacitance, C_{sp} for	$C_{sn} = \frac{2 \times I \times \Delta t}{M}$	' dt ' is the discharging time, ' I ' is the
single electrode (from GCD)	sp $m \times dV$	current, $'m'$ is the mass of active
		material.
Specific capacitance, C_{sp} for	$C_{sp} = \frac{I \times \Delta t}{U \times V}$	' dt ' is the discharging time, ' I ' is the
SSC/ASC (from GCD)	$m \times av$	current, $'m'$ is the mass of active
		material.
Energy density, E_d	$E_d = \frac{C_{sp} \times (dV)^2}{7.2}$	dV is the voltage window, C_{sp} is the

Table S1: Formulae used for finding various parameters.

(from GCD)	specific capacitance.
Power density, P_d	$P_d = \frac{E_d \times 3.6}{\Delta t}$ Δt is the discharging time, E_d is the
(from GCD)	energy density.
Coulombic efficiency, η	$\eta = \frac{t_d \times 100}{t_d}$ 't_c' is the charging time and 't_d' is the
	t_c discharging time.
Response time, $ au$	$\tau = \frac{1}{2}$ 'v' is the frequency corresponding to
(from EIS)	ν phase angle $\theta = 45^{\circ}$.

3. Results and Discussion

Table S2: Physico-chemical properties of activated carbon (AC).	

Property	Value
Source	Coconut-shell
Appearance	Black powder
Molecular weight	12.01 g mol ⁻¹
Median size	30-60 μm
Ignition temp.	842°F
Melting point	3550°C
Resistivity	1375 μ Ω- cm

Table S3: XRD analysis for CrCo₂O₄ (CCO) microspheres.

Angle	Lattice plane	Interplanar	Crystallite
$2^{ heta}$ (degree)	(hkl)	spacing,	size (nm)
		d (Å)	
18.86	(111)	4.69	8.71
31.01	(220)	2.88	15.06

36.42	(311)	2.46	10.49
44.37	(400)	2.03	11.57
54.88	(422)	1.67	8.71
58.61	(511)	1.57	9.66
64.46	(440)	1.44	10.44

Table S4: Identification of different functional groups from FTIR.

Wavenumber (cm ⁻¹)	Functional group	Reference
491.01	Cr-O	1-3
628.93	Со-О	4
745.44	C-H bending	5
1005.87	=C-N	6
	deformation (in-plane)	
1143.70	C-N stretching	6
1156.65	C-O stretching	6
1273.92	C-H in-plane bending	6, 7
1424.69	C-H bending	6
1527.50	N-H bending	6
1575.47	C=C stretching	8
1624.21	C=C stretching	7, 8
2103.95	$C \equiv C$	6
2358.28	CO_2	7

7

Fig. S1: Raman spectrum of CAP.

Table S5. Roman shift in CAP
Table S5. Roman chift in (AD

Symmetry	Bond vibration	Raman shift	References
		(cm ⁻¹)	
δ(O-Co-O)	$F_{2g}(3)$	192.88	9
v (Cr-O)	F _{2g} (2)	527.18	10
v _s (Cr-O)	A_{1g}	663.13	9, 10
PPY ring	Polaron distortion	965.80	11
С-Н	In plane bending	1053	12, 13
С-Н	In plane bending	1093	4

C-N	Stretching	1220	14
PPY Ring	Stretching	1347	5
C=C	Asymmetric stretching	1418	14
C=C	Asymmetric stretching	1580	15

Fig. S2: Size distribution of CCO.

(a)			C	CO	Spec	trum 1	(b				CAP		Sp	ectrum 1
	Element	Wt %	At %						Element	Weight	% Atom	ic%	-	
~	ок	29.65	59.85		Un			0	ск	16.25	32.63		1 5.0	
	Cr K	21.83	13.56					Cr	NK	4.81	8.29			
Cr	Co K	48.51	26.59					Cr	ок	23.40	35.29			
Co	Totals	100.00			lyn. ¹⁴ Clectron Hwge I				Cr L <mark>L</mark>	19.21	8.91	,		
Co								Ĩ	Co	36.33	14.87		Dyn Date	i Maga 1
									T <mark>ota</mark> ls	100.00				
Co			Cr Cr	Co Co	0			N Co	ul la	electrony and	CrCr	Co	Co	
0 1	2 3	4	5 6	7	8 9	10	0	1	2	3 4	5 6	7	8	9
Full Scale 9	975 cts Cursor: (0.000				keV	Full Sc	ale 142 d	cts Cursor: 0.0	000			Ŭ	keV

Fig. S3: EDS of (a) CCO and (b) CAP.

Fig. S4: Elemental mapping of CAP.

Fig. S5: (a) CV and (b) GCD curves of AC.

Fig. S6: (a) CV and (b) GCD curves of PPY.

Sample	ССО	CAC	CAP
$R_s(\Omega)$	3.69	2.67	2.14
$R_{ct}\left(\Omega\right)$	0.37	0.34	0.36

Table S6: R_s and R_{ct} of CCO, CAC, and CAP.

Table S7: Supercapacitive performance comparison of the prepared samples with literature.

Material	C _{sp}	Voltage	ASC/SSC	E _d	Pd	Stability,	Reference

	(Fg ⁻¹)	window		(Wh kg ⁻¹)	(kW	%	
		(V)			kg-1)	(cycles)	
MnCo ₂ O ₄ -	2364	0-1.6	ASC	25.7	16.1	85.5	16
graphite@PPY						(10,000)	
NiCo ₂ O ₄ /NF@PPY	1717 C g ⁻¹	0-1.6	ASC	68.9	1.77	89.2	17
						(10,000)	
MgCo ₂ O ₄ /PPY	988	0-1.6	ASC	40.0	1.54	84.0	18
	(1 A g ⁻¹)					(10,000)	
NiCo ₂ O ₄ /CNF@PPY	910	0-1.5	ASC	40.8	0.73	88.0	19
	(1 A g ⁻¹)					(10,000)	
NiCo2O4/Co3S4/MnS	2557	0-1.6	ASC	81.1	0.80	83.6	20
@PPY	(1 A g ⁻¹)					(20,000)	
MnNi ₂ O ₄ /PPY	304	0-1.6	ASC	35.9	0.80		21
	(1 A g ⁻¹)						
CC@NiCo ₂ O ₄ @PPY	1687	0-1.5	ASC	46.5	0.72	80.0	22
	(1 A g ⁻¹)					(10,000)	
NiCo ₂ O ₄ @PANI	561	0-1.2	ASC	6.4	0.28	86.2	23
	(10 mV s ⁻¹)					(3,000)	
CoFe ₂ O ₄ /PANI/GO	346.9	0-1.2	SSC	69.3	5.98	79.0	24
	(1 A g ⁻¹)					(5,000)	

NiMoO₄/rGO/PANI	1150 C g ⁻¹ (1 A g ⁻¹)	0-1.7	ASC	82.43	0.85	94.5 (10,000)	25
CuCo2O4/GO@PANI	312.7 (1 A g ⁻¹)	0-1.2	SSC	62.5	5.99	84.2 (5,000)	26
Fe-MnCo ₂ O ₄ @PPY	422.4 (2 mA cm ⁻²)	0-1	SSC	519.9 mWh cm ⁻²		94.7 (7,000)	27
CoCr ₂ O ₄ /Ti ₃ C ₂	417	-0.2-0.5	3-E	20.89	0.60		28
NiCo2O4/CF@PANI	369 mAh g ⁻¹	0-1.5	ASC	60.60	2.32		29
CoCr ₂ O ₄ /Co-MOF	596.8 C g ⁻¹ (1 A g ⁻¹)	0-1.6	ASC	34.36	0.20	96.2 (5,000)	30
CrCo ₂ O ₄ /AC/PPY	991.25 (5 mV s ⁻¹), 879.37 (4 A g ⁻¹)	0-1.6	HSC	97.77	1.6	76.75 (10,000)	This work

Fig. S7: (a) LED-setup for device testing; and (b) Digital images of glowing LED-panel at different times.

References

- 1. E. Berei, O. Ştefănescu, C. Muntean, B. Țăranu and M. Ştefănescu, *Journal of Thermal Analysis and Calorimetry*, 2019, **138**, 1863-1870.
- 2. P. Choudhary, P. Saxena, A. Yadav, A. Sinha, V. Rai, M. Varshney and A. Mishra, *Journal of Superconductivity and Novel Magnetism*, 2019, **32**, 2639-2645.
- 3. A. Borhade, V. Bobade, D. Tope, J. Agashe and S. Kushare, *Journal of Inorganic and Organometallic Polymers and Materials*, 2021, **31**, 4670-4683.
- 4. P. Zhang, J. Liu, J. Wu, W. Wang, C. Zhou, S. Guo, S. Li, Y. Yang and L. Chen, *Materials Today Energy*, 2020, **17**, 100451.
- 5. R. A. Sutar, L. Kumari and M. MV, *Journal of Applied Physics*, 2021, **130**.
- 6. A. B. D. Nandiyanto, R. Oktiani and R. Ragadhita, *Indonesian Journal of Science and Technology*, 2019, **4**, 97-118.
- 7. R. Jin, Y. Meng, Y. Ma, H. Li, Y. Sun and G. Chen, *Electrochimica Acta*, 2016, **209**, 163-170.
- 8. J. Hu, M. Li, F. Lv, M. Yang, P. Tao, Y. Tang, H. Liu and Z. Lu, *Journal of Power Sources*, 2015, **294**, 120-127.
- 9. Z. Tian, C. Zhu, J. Wang, Z. Xia, Y. Liu and S. Yuan, *Journal of Magnetism and Magnetic Materials*, 2015, **377**, 176-182.
- 10. M. Kamran, K. Nadeem and M. Mumtaz, *Solid State Sciences*, 2017, **72**, 21-27.
- 11. H. S. Abdullah, *Int. J. Phys. Sci*, 2012, **7**, 5468-5476.
- 12. M. Gniadek, S. Malinowska, T. Rapecki, Z. Stojek and M. Donten, *Synthetic metals*, 2014, **187**, 193-200.
- 13. M. A. Farea, H. Y. Mohammed, P. W. Sayyad, N. N. Ingle, T. Al-Gahouari, M. M. Mahadik, G. A. Bodkhe, S. M. Shirsat and M. D. Shirsat, *Applied Physics A*, 2021, **127**, 681.

- 14. G. Arteaga, M. Del Valle, M. Antilén, M. Romero, A. Ramos, L. Hernández, M. Arévalo, E. Pastor and G. Louarn, *International Journal of Electrochemical Science*, 2013, **8**, 4120-4130.
- 15. F. Wu, M. Sun, W. Jiang, K. Zhang, A. Xie, Y. Wang and M. Wang, *Journal of Materials Chemistry C*, 2016, **4**, 82-88.
- 16. F. Wang, X. Lv, L. Zhang, H. Zhang, Y. Zhu, Z. Hu, Y. Zhang, J. Ji and W. Jiang, *Journal of Power Sources*, 2018, **393**, 169-176.
- 17. R. BoopathiRaja and M. Parthibavarman, *Electrochimica Acta*, 2020, **346**, 136270.
- 18. S. Sathishkumar, M. Karthik, R. Boopathiraja, M. Parthibavarman, S. Nirmaladevi and S. Sathishkumar, *J Mater Sci.: Mater Electron* 2022, **33**, 21600-21614.
- 19. T. H. Ko, D. Lei, S. Balasubramaniam, M.-K. Seo, Y.-S. Chung, H.-Y. Kim and B.-S. Kim, *Electrochimica Acta*, 2017, **247**, 524-534.
- 20. L. He, Z. Guo, G. Wang and M. Li, *Journal of Energy Storage*, 2024, **79**, 110130.
- 21. A. Sathiyan, E. Elaiyappillai, S.-F. Wang, S. Dhineshkumar and P. M. Johnson, *New Journal of Chemistry*, 2024, **48**, 3080-3088.
- 22. J. Yu, D. Yao, Z. Wu, G. Li, J. Song, H. Shen, X. Yang, W. Lei, F. Wu and Q. Hao, ACS Applied Energy Materials, 2021, **4**, 3093-3100.
- 23. X. Li, H. Xie, Y. Feng, Y. Qu, L. Zhai, H. Sun, X. Liu and C. Hou, *Journal of Applied Polymer Science*, 2023, **140**, e54580.
- 24. S. Verma, T. Das, V. K. Pandey and B. Verma, *Journal of Molecular Structure*, 2022, **1266**, 133515.
- 25. H. M. Fahad, R. Ahmad, F. Shaheen, A. A. Ifseisi, M. H. Aziz and Q. Huang, *Electrochimica Acta*, 2024, 143756.
- 26. S. Verma, V. K. Pandey and B. Verma, *Synthetic Metals*, 2022, **286**, 117036.
- 27. Z. Chen, X. Zu, L. Chen, Y. Qi, W. Jian, Y. Wu, W. Zhang, X. Lin, G. Yi and Q. Liu, ACS Applied Energy Materials, 2022, **5**, 5937-5946.
- 28. R. Shafique, M. Rani, A. Mahmood, R. A. Alshgari, K. Batool, T. Yaqoob, N. K. Janjua, S. Khan, S. Khan and G. Murtaza, *International Journal of Energy Research*, 2022, **46**, 6689-6701.
- 29. S. K. Shinde, S. S. Karade, N. T. N. Truong, S. S. Veer, S. F. Shaikh, A. M. Al-Enizi, A. D. Jagadale, H. M. Yadav, M. S. Tamboli and C. Park, *Journal of Energy Storage*, 2024, **78**, 109960.
- 30. Q. Li, J. Zhou, S. Zhao, Y. Li, C. Chen, K. Tao, R. Liu and L. Han, *ChemElectroChem*, 2020, **7**, 437-444.