## **Supporting Information**

# Shape Controlled Water Assisted Synthesis of Luminescent CsPb<sub>2</sub>Br<sub>5</sub> 2D Perovskite Microcrystals for High Responsive UV Detector

Dipayan Ray<sup>a</sup>, Ankush Saini<sup>b</sup>, Ankit Kumar<sup>a</sup>, Sumit Kumar<sup>a</sup> Monojit Bag<sup>b\*</sup>, and Prasenjit Kar<sup>a\*</sup> <sup>a</sup>Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India <sup>b</sup>Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India

E-mail: <u>kar.prasen@gmail.com</u>, <u>prasenjit.kar@cy.iitr.ac.in</u>, <u>monojit.bag@ph.iitr.ac.in</u>

# **Table of Contents**

| Sl. No | Contents                                                                       | Page no. |  |
|--------|--------------------------------------------------------------------------------|----------|--|
|        |                                                                                |          |  |
| 1.     | Experimental section                                                           | S3-S4    |  |
| 2.     | Characterization techniques                                                    | S4       |  |
| 3.     | The atomic percentage of CsPb <sub>2</sub> Br <sub>5</sub> ( <b>Table S1</b> ) | S5       |  |
| 4.     | TCSPC lifetime data (Table S2)                                                 | S5       |  |
| 5.     | Tauc Plot of CsPb <sub>2</sub> Br <sub>5</sub> ( <b>Figure S1</b> )            | S6       |  |
| 6.     | EDX spectra of CsPb <sub>2</sub> Br <sub>5</sub> (Figure S2)                   | S6       |  |
| 7.     | Elemental mapping of CsPb <sub>2</sub> Br <sub>5</sub> . ( <b>Figure S3</b> )  | S7       |  |
| 8.     | Survey scan of XPS for CsPb <sub>2</sub> Br <sub>5</sub> (Figures S4)          | S7       |  |

#### **Experimental Section**

#### **Chemical Reagents**

Cesium bromide (CsBr), Lead (II) bromide (99%) (PbBr<sub>2</sub>), Titanium isopropoxide (TTIP 97%) oleylamine, and oleic acid were brought from Sigma Aldrich. Hexane, N, N-dimethylformamide (DMF), and Phenacyl Bromide were purchased from Rankem, SRL, and TCI, respectively. From SR Laboratories Pvt. Ltd., isopropanol (IPA, extra pure 99.5%). Hydrochloric acid (HCl) was purchased from Rankem. All these chemicals were used as received, without any further purification.

#### Synthesis of the perovskite material

First, in a 100 ml beaker 5 ml deionized water was poured and 500  $\mu$ l of HBr was added to the solution with constant stirring. Following to this we added 2 mmol of Phenacyl bromide and kept stirring for a few minutes. We added 200  $\mu$ l of oleic acid and 100  $\mu$ l of oleylamine followed by 2 mmol PbBr<sub>2</sub>. When the solution was mixed properly after a few minutes of stirring, we got a homogenous white solution. Then we added 5.5 mmol of CsBr into it and the solution was stirred for another 1 hour. We added 5 ml of acetone into the as-synthesized solution and sonicated it properly to get a uniform mixture. That white solution was kept for 15-20 min to settle down and the precipitated white solid was collected by centrifugation and redispersed in hexane for further characterization.

#### **Device fabrication process**

To prepare the photodetector device, a compact TiO2 electron transport layer (ETL) was first deposited on the FTO-coated glass using a previously described method.<sup>1</sup> Briefly, 369  $\mu$ l TTIP was added dropwise to 2.53 ml IPA while stirring. A 0.013 M HCl solution in IPA was prepared by adding 35  $\mu$ l 2 M HCl to 2.53 ml IPA in a separate vial. After stirring the TTIP solution for one

hour, HCl solution was added dropwise into the TTIP solution with continuous vigorous stirring. After stirring for 3 h the compact  $TiO_2$  ETL film was deposited on the FTO glass using a spin coater at 3000 rpm for 30 sec. Furthermore, to dry the film, the coated substrates were placed on a hot plate at 100 °C for 30 min and then finally annealed at 480 °C for 30 min. To prepare the active film of the photodetector device, hexane-suspended (10 mg/ml) CsPb<sub>2</sub>Br<sub>5</sub> NCs were spun on TiO<sub>2</sub>-coated FTO glass at 2000 rpm for 30 sec and dried at 80 °C on a hot plate in the air. The gold counter metal electrode was sputtered on top of the prepared CsPb<sub>2</sub>Br<sub>5</sub> NCs film. Using a mask, the area of the devices was kept at 2mm×2mm (0.04 cm<sup>2</sup>).

#### **Characterization techniques**

#### Absorption and emission spectroscopy

The ultra violate- visible (UV-Vis) spectra were acquired on a Shimadzu UV-Vis 2450 spectrometer in the range of 200-800 nm for absorbance data. A fluoromax-4C spectrophotometer by Agilent was used to record the photoluminescence and excitation spectra. The range in which the PL spectra were recorded was 320-580 nm with a slit width of 2.5 and in a medium scan.

#### Powder X-ray Diffraction (P-XRD) measurement

Powder XRD was acquired by a Rigaku Smart Lab automated multipurpose X-ray diffractometer in the range of  $2\theta = 10-50$  with a wavelength of 0.154 nm (Cu K $\alpha$ ) and the acceleration voltage was 9kW.

#### Field Emission Scanning Electron Microscope (FE-SEM)

The morphological analysis of our sample was performed on Carl Zeiss Gemini and Carl Zeiss Ultra plus FE-SEM where the operating voltage was kept at 20 kV.

#### High resolution-Transmission Electron Microscopy (HR-TEM)

The morphological and structural characteristics were investigated by JEM 2100 TEM.

#### X-Ray Photoelectron Spectroscopy (XPS)

The elemental analysis was done using PHI 5000 Versa Probe III model of XPS.

#### Thermogravimetric analysis (TGA)

The thermal stability was carried out in the range of 0-1000 °C on SII 6300 EXSTAR with a heating ramp of 10 °C/ min.

#### **Time-Correlated Single Photon Counting (TCSPC)**

The lifetime measurement of our sample was done on FLS-1000-xs-t by Edinburgh Instruments. The excitation source was a 340 nm pulsed light-emitting diode (EPLED).

| Element | Atomic % |  |  |
|---------|----------|--|--|
| Br      | 62.83    |  |  |
| Cs      | 13.12    |  |  |
| Pb      | 24.05    |  |  |

Table S1. Atomic percentage of CsPb<sub>2</sub>Br<sub>5</sub> composite.

| A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | $\tau_1$ | $	au_2$  | τ <sub>3</sub> | $	au_{avg}$ |
|----------------|----------------|----------------|----------|----------|----------------|-------------|
| 438.2006       | 471.0295       | 108.782        | 2.36E-09 | 6.66E-09 | 1.97E-08       | 1.04E-08    |

 Table S2. TCSPC lifetime data.



Figure S1. Tauc Plot of CsPb<sub>2</sub>Br<sub>5</sub>





Figure S2. EDX spectra of CsPb<sub>2</sub>Br<sub>5</sub>



Figure S3 Elemental mapping of CsPb<sub>2</sub>Br<sub>5</sub>



Figure S4. Survey scan of XPS for CsPb<sub>2</sub>Br<sub>5</sub>

### **Reference:**

1) A. Suhail, A. Saini, S. Beniwal and M. Bag, *Journal of Physical Chemistry C*, 2023, **127**, 17298–17306.