Supporting information for:

Cell invasive amyloid assemblies from SARS-CoV-2 peptides can form multiple polymorphs with varying neurotoxicity

Oana Sanislav¹, Rina Tetaj^{2, 3}, Metali³, Julian Ratcliffe⁴, William Phillips³, Annaleise Klein⁵, Ashish Sethi,⁵ Jiangtao Zhou,⁶ Raffaele Mezzenga,⁶ Sina Saxer,² Mirren Charnley^{7,8,9}, Sarah Annesley¹, Nicholas P Reynolds^{*3}

- 1. Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Australia
- 2. Institute for Chemistry and Bioanalytics, School of Life Sciences, FHNW, Muttenz, Switzerland
- 3. Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Australia
- 4. Bio Imaging Platform, La Trobe University, Melbourne, Australia
- 5. Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, VIC, 3168, Australia
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
- 7. Centre for Optical Sciences, Faculty of Science Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- 8. Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia

Supplementary Materials and Methods

Circular Dichroism Spectroscopy (CD)

CD spectroscopy was performed using an AVIV 410-SF CD spectrometer. Spectra were collected between 190 and 260 nm in PBS at 1 mg mL⁻¹ using 1 mm quartz cuvettes with a step size of 0.5 nm and 2 s averaging time. Data were analysed using the BeStSel (Beta Structure Selection) method of secondary structure determination.³⁴ HT values were monitored in order to select a optimum wavelength range for secondary structure determination. HT values below 700 V are considered to produce reliable data therefore secondary structures analysis was only performed between 260-200 nm for ILLIIM and RNYIAQVD.

Figure S1: a) Circular dichroism of ILLIIM, RNYIAQVD and AAAAAA assemblies in PBS at 1 mgmL⁻¹, b) high tension (wavelength dependent gain) used to determine optimum region for secondary structure determination (e.g. all HT values > 700 V are considered unsuitable).

Table S1: Secondary Structure Determination from CD spectra

	Left	Right	Relaxed	β-turn	Total	α -helix	unclassified	RMSD
	Twisted	Twisted	β-Sheet		β-sheet			
	β-Sheet	β-Sheet						
RNYIAQVD	0	77.6	0	0	77.6	22.4	0	3.763
ILLIIM	20.8	11.9	38.7	28.6	100	0	0	1.054

Figure S2: Additional TEM figures of ILLIIM assemblies, red arrows highlight crystalline polymorphs, blue arrows highlight crystalline polymorphs. Scale bars a) = 200 nm, b) = 600 nm, c) = 400 nm, d) = 200 nm, e) = 200 nm, f) = 400 nm

Figure S3: Additional TEM figures of RNYIAQVD assemblies, showing a) fibrillar polymorphs, b) oligomers, c) mixed populations of oligomers and fibrils. Scale bars a) = 200 nm, b) = 1000 nm, c) = 600 nm.

Figure S4: TEM image of small amorphous aggregates formed by the control peptide AAAAAA

Figure S5: Additional AFM images showing that ILLIIM crystals are made from laterally associated protofilaments with a diameter of 8 nm.

	Form Factor Used	Length (nm)	Width (nm)	Thickness (nm)	Reduced Chi2 (χ ² _R)
ILLIIM	Flattened bicelle	105.34	38.84	10	0.81
RNYIAQVD	Flexible cylinder	3.17 x10 ³² (∞)	50.2	n/a	1.15
ΑΑΑΑΑ	Flexible cylinder	149.6	21.9	n/a	0.35 bad fit

Table S2: Fitting Parameters used to fit SAXS plots in figure 4 (NB. for χ^2_R a perfect fit = 1)