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1 Supplementary Text 1: Benchmarking experimental spectrum with numerical simulation

We validate our FDTD simulation of the hexagonal nanohole array device by benchmarking it against
the results published by Conteduca et al.1. The device consists of a hydrogenated amorphous sili-
con dioxide film with parameters that match those reported in the literature: 110 nm thickness, 60
nm radius, and 480 nm periodicity. As shown in Figure S1b, our FDTD simulations closely mirror
the experimental reflection spectra after calibration, confirming the accuracy and reliability of our
simulation model.

Subsequently, leveraging this calibrated model, we extended our study to investigate different
materials, specifically gold (Au) and silver (Ag). For the optical constants of Au, we used the data
from Johnson and Christy2, while for Ag, we used the Palik data3 for the 0-2 µm range.

We also benchmarked the nanohole array with a square lattice configuration, achieving consistent
agreement between the FDTD simulated transmittance and the experimental data using identical
parameters (thickness: 120 nm, radius: 140 nm, and periodicity: 520 nm). As shown in Figure S1a,
the experimental spectrum closely matches the simulation, underscoring the accuracy of our model.
This model was then applied to generate transmission spectra for gold and silver nanohole arrays.

2 Supplementary Text 4: Data Quality and Diversity

2.1 Data Quality
Our dataset contains no missing values or duplicate rows, ensuring the integrity of the data. Outlier
detection using the Interquartile Range (IQR) method indicates no outliers in the structural param-
eters, affirming the reliability of the data. The IQR method is a statistical technique used to detect
outliers in a dataset. It involves calculating the range between the first quartile (Q1) and the third
quartile (Q3) of the data, which represents the middle 50% of the dataset. An outlier is defined as
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any data point that falls below Q1− 1.5× IQR or above Q3+ 1.5× IQR. This method helps identify
values that are significantly lower or higher than the rest of the data, thereby ensuring the integrity
and reliability of the dataset.

IQR = Q3−Q1 (1)

A point is considered an outlier if it is:

Less than Q1−1.5× IQR or greater than Q3+1.5× IQR (2)

2.2 Diversity of Data
We varied key structural parameters extensively: film thickness (100-150 nm), hole radius (50-100
nm for hexagonal, 100-150 nm for square), and periodicity (475-525 nm). These ranges fall within
practical nanohole device dimensions reported in the literature, providing a diverse and representative
dataset for training1,4. The distribution plots for these parameters and transmittance data points
further confirm the dataset’s robustness (Figure S9).

3 Supplementary Text 3: Forward and inverse model architecture and training

In Figure S3, it’s evident that the training and validation losses decrease as we continue training our
forward model. We observe that the model’s improvement becomes very slow after 100 epochs. After
1500 epochs, the training MSE converges to an approximate value of 3.12×10−4, while the validation
MSE stabilizes around 4.81×10−4. In learning curves of inverse models, we can see fluctuations at
the beginning as the model adjusts to the training data, followed by a gradual decrease in loss as the
model refines its parameters to better fit the data (Figure S5a). This decreasing trend indicates that
our models are effectively capturing the underlying patterns in the training data. For the validation
losses, as depicted in Figure S5b we assess how well our models generalize to unseen data. The
training losses of the tandem network stabilize at 1.97× 10−3. On the other hand, validation losses
stabilize at 5.66×10−3. This indicates that our model is not only learning well from the training data
but also generalizing effectively to new, unseen samples.

4 Supplementary Text 4: Comparison of tandem network prediction against true values in the
test set

In the inverse prediction, after training the tandem neural network, the 666 groups of spectra from
the testing dataset are fed into the network. The network then predicts the parameters: thickness (T),
radius (R), and periodicity (P), which are subsequently compared with the original values employed
to generate the spectra (Figures S7 and S8). As a guiding reference, the blue line represents y = x.
The predicted values for T, R, and P closely follow the trend of y = x implying the predictions are very
close to real values.
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Fig. S1 Transmission spectrum from experiment and FDTD simulations (a) Square lattice with gold film, (b)
Hexagonal lattice with a-SiOx:H film. Experimental data (red curve) used for benchmarking is adapted from Conteduca
et al.1. This article is licensed under a Creative Commons Attribution 4.0 International License.
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Fig. S2 (a) Scatter plot illustrating the relationship between Mean Squared Error (MSE) and the (a) number of layers
and nodes in the forward network, the optimum architecture is 5 layers and 1080 nodes with lowest MSE of 0.0012
indicated by a cyan diamond, (b) learning rate and nodes in the forward network, the optimum hyperparameters are
1080 nodes and learning rate of 0.00011 with lowest MSE of 0.0012 marked with a cyan diamond, (c) number of layers
and nodes in the forward network, the optimum architecture is 6 layers and 1180 nodes with lowest MSE of 0.0092
indicated by a cyan diamond. (d) learning rate and nodes in the inverse network, the optimum hyperparameters are
1180 nodes and learning rate of 0.000325 with lowest MSE of 0.0092 marked with a cyan diamond
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Fig. S3 Optimized forward neural network architecture and learning curves for spectrum prediction.
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Fig. S4 Training and validation losses of the fully connected network, 1-D Convolutional neural network, and Tandem
neural network for inverse design of nanohole arrays. (a) Training loss and (b) Validation loss are depicted for each
network architecture.
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Fig. S5 Comparison between FDTD simulated spectra and Forward predicted spectra for (a) hexagonal lattice with
Au film and (b) hexagonal lattice with Ag film.
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Fig. S6 Inverse design results for target spectrum randomly chosen from the test dataset. (a) Hexagonal lattice with
Au film. (b) Hexagonal lattice with Ag film. Black solid lines show the target transmittance and red dashed lines show
the corresponding transmission spectra by conducting FDTD calculation using the predicted structural parameters.
Predicted parameters are labeled red and target parameters are labeled black on the figures
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Fig. S7 Generalization Test Results of the Tandem Neural Network for Inverse Design. Comparison between original
and predicted values of (a) Thickness, (b) Radius, (c) Periodicity. The close agreement between the retrieved
geometrical values and the original values demonstrates the reliability of the trained tandem network for inverse
design, even for samples outside the dataset.
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Fig. S8 Scatter plots of inverse predicted parameters for Tandem Neural Network : (a) thickness (b) radius and (c)
periodicity, with respect to actual parameters.
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Fig. S9 Distribution of three critical parameters in the dataset used for training the deep learning model for nanohole
array design.
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Fig. S10 (a) Comparison of experimental transmittance data for square Au NHA with deep neural network (DNN)
predicted transmittance data for two different dataset sizes. The experimental data is shown in black, while the
DNN-predicted data for dataset sizes of 6655 and 7260 are depicted in red and blue, respectively. (b) To further
validate our model, we performed an additional validation using another experimental dataset. Our neural network
predictions align well with the experimental spectrum. The target parameters are T: 120 nm, R: 140 nm, P: 530 nm,
L: Square, M: Au. For the dataset size of 7260, the predicted parameters are T’: 121 nm, R’: 141 nm, P’: 530 nm,
L’: Square, M’: Au.
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Table S1 Frequency of transmission spectra values for different types of nanohole arrays

Transmission Interval Hexagonal Au Hexagonal Ag Hexagonal a-SiOx:H Square Au Square Ag
0-0.0001 3.67% 5.37% 0.0027% 0.9% 0.7%

0.0001-0.001 21% 23% 0.02% 3.32% 4.6%
0.001-0.01 42% 38% 0.13% 31.35% 35%
0.01-0.1 29% 29% 0.4% 64% 60%

0.1-1 4.4% 5.3% 99.4% 0.27% 0.13%
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Table S2 Details of Training Parameters

Initializer Weight: Uniform, Bias: Zeros

Activation Function

Hidden Layer: ReLU,
Output Layer: Linear (Regression)

and Softmax (Classification)

Loss

MSE (Forward Model),
MSE and Sparse Categorical

Cross-Entropy (Inverse Model)
Optimizer Adam

Learning Rate
0.00011 (Forward Model),
0.000325 (Inverse Model)

Batch Size 128
Early Stopping Yes
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Table S3 Hyperparameter Optimization of 1D CNN. The table shows various trials with different combinations of
convolutional layers, filter numbers, dense layers, node numbers, and learning rates. The optimal CNN configuration
is chosen based on the lowest Mean Squared Error (MSE), which is observed in trial 16.

No. of
trials

MSE
No. of

Convolutional
Layers

Filter numbers
No. of
Dense
Layers

Node Numbers Learning Rate

1 0.0154 3 16, 32, 128 7 1350 0.00012
2 0.0194 6 16, 16, 128, 256, 32, 64 5 1087 0.0000142
3 0.016 2 16, 64 5 1843 0.0000584
4 0.028 1 128 10 700 0.00009
5 0.0354 5 16, 128, 16, 32, 256 8 731 0.00045
6 0.0086 6 16, 256, 32, 64, 32, 32 6 1166 0.00028
7 0.0168 3 16, 16, 16 7 1684 0.0007
8 0.0135 4 16, 128, 16, 128 8 800 0.0006
9 0.0148 1 32 6 1956 0.00024

10 0.0247 6 16, 16, 256, 64, 32 , 256 2 1243 0.000035
11 0.0097 5 16, 256, 32, 64, 32 3 210 0.00028
12 0.015 5 16, 256, 32, 64, 32 2 100 0.00022
13 0.0153 5 16, 256, 32, 64, 32 3 200 0.000168
14 0.0167 6 16, 32, 128, 16, 128, 256 4 1500 0.000113
15 0.016 4 16, 64, 64, 32 1 400 0.0003
16 0.0077 5 16, 32, 64, 32, 256 4 510 0.00017
17 0.04 3 64, 32, 64 10 520 0.000057
18 0.039 4 16, 256, 256, 32 4 900 0.000018
19 0.02 4 16, 256, 64, 128 6 500 0.000146
20 0.0126 5 16, 256, 32, 64, 128 4 1100 0.0008
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Table S4 Performance of models for different dataset sizes. For the forward model, average MSE is used as the
performance metric, evaluated on the test dataset. For the inverse model (Tandem), MAE and R-squared values are
employed to measure performance, also on the test dataset.

Dataset Size Inverse Model Forward Model
4990 Performance Metrics Thickness Radius Periodicity Average MSE

MAE (nm) 2.09 1.44 0.986 0.00058
R-squared value 0.94 0.97 0.977

6655 MAE (nm) 0.93 1.21 0.56 0.000244
R-squared value 0.986 0.996 0.996
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Table S5 Performance of models for different cost functions used during training. For the forward model, average
MSE is used as the performance metric, evaluated on the test dataset. For the inverse model (Tandem), MAE and
R-squared values are employed to measure performance, also on the test dataset.

Cost Function Inverse Model Forward Model
MAE Performance Metrics Thickness Radius Periodicity Average MSE

MAE (nm) 1.28 1.5 0.87 0.00064
R-squared value 0.97 0.99 0.98

MSE MAE (nm) 0.93 1.21 0.56 0.000244
R-squared value 0.986 0.996 0.996
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Table S6 Performance comparison of different dataset sizes on tandem neural network.

Dataset Size Performance Metrics Thickness (nm) Radius (nm) Periodicity (nm)
6655 MAE 0.93 1.21 0.56

R² 0.99 0.99 0.99
7260 MAE 0.96 1.29 0.81

R² 0.99 0.99 0.96
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