Materials and chemicals

All chemicals are analytical and can be used without further purification.TC4 titanium alloy plates (Ti-6%Al-4%V) and pure titanium plates purchased from Baoti Group Co., Ltd. (Shaanxi, China) are both for direct use in industrial-grade products.**Table.S1** chemicals and corporation

chemical	
Absolute ethyl alcohol (C_2H_6O),	Aladdin Ltd. (Shanghai, China)
Acetone (C_3H_6O)	Aladdin Ltd. (Shanghai, China)
Ethylene glycol (EG, (CH ₂ OH) ₂)	Aladdin Ltd. (Shanghai, China)
Ammonium fluoride (NH ₄ F)	Aladdin Ltd. (Shanghai, China)
Sulfuric acid (H ₂ SO ₄)	Aladdin Ltd. (Shanghai, China)
Lead nitrate(Pb(NO ₃) ₂)	Aladdin Ltd. (Shanghai, China)

Pre-treatment of the titanium sheet

Pure plates and TC4 plates are cut into small pieces in the size of 20 mm x 10 mm x 1 mm. The pre-processing step is divided into two steps. First, the potassium alloy plate is immersed in a mixed solution of HF+HNO₃+H₂O with a volume ratio of 1: 2: 10-15s, and the surface oxide layer is removed by chemical polishing. Then, the titanium alloy tablets use ethanol, the ionic water is removed by ultrasound for 5 mins, the number of times is three, remove the surface oil dirt. Finally, the titanium alloy plate is stored in an ethanol solution for reserve use.

Preparation of ZrO₂-Co₃O₄ Mixed Oxide Powder

 ZrO_2 - Co_3O_4 compound oxide powder is prepared using the solution-gel method. First, the citric acid (5.6g, 0.03 mol) and the $Zr(NO_3)_4 \cdot 5H_2O(4.2932 \text{ g}, 0.01 \text{ mol})$ are dissolved in deionized water and added Co(NO_3)₂ $\cdot 6H_2O(2.9103 \text{ g}, 0.01 \text{ mol})$. The resulting solution is heated for 12 hours in a dryer at 160 ° C to obtain a precursor. The black is then transferred to the maffar furnace, in the air, to burn at 700 ° C for 12 hours at a heating rate of 2 ° C/min. Finally, with the use of acrylic, grind, remove impurities, wash, and obtain the target powder.

Figure.S1 The XPS spectra of (a) V 2p of AVTN-0, AVTN-7 and TN-7, (b) Al 2p of AVTN- $\ensuremath{\mathsf{AVTN}}$

0,AVTN-7 and TN-7

Figure S2 the EPR of AVTN-7and TN-7

Figure S3 the EDS of TC4/AVTN-7/ZrO₂-Co₃O₄-PbO₂ Table S1 the R_{et1} and R_{et2} of different electrodes

	.1 612		
Electrode	R_{ct1} (ohm/cm ²)	R_{ct2} (ohm/cm ²)	
TC4/AVTN-7/ZrO2-Co3O4-PbO2	3.004	0.5521	
TC4/AVTN-7/PbO ₂	20.48	0.7562	
TC4/PbO ₂	0.07823	22.35	
Ti4/PbO ₂	123	9.402	

Figure S4 the XRD pattern of ZrO2-Co3O4 powder

Figure S7 the CV curves of different electrodes

Figure S8 Electrochemical performance testing of the ZrO₂, Co₃O₄, and ZrO₂-Co₃O₄

Figure S9 Electrochemical properties of powders annealed over time

Figure S10 the SEM images of nanotubes at different oxidation voltages (a) 40 V;(b)50 V ;(c)60 V;(d)70 V;(e)(f)The LSV curves and Tafel plot of nanotubes at different oxidation voltages

Figure S11 Electrochemical properties of AVTN-1, AVTN-3, AVTN-5 and AVTN-7