Electronic Supplementary Information

Liquid Crystals-Mediated Self Assembly of Copper Nanoclusters with Induced Circular Dichroism and Amplified Circularly Polarized Luminescence

Shulin Li^a, Ning Feng^a, Mengdi Sun^a, Yuxiang Sha^a, Xia Xin^{a,*}, Hui Zhao^b, Hongguang Li^{a,*}

^a National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical

Engineering, Shandong University, Jinan, 250100, China

^b ShanDong Chambroad Holding Group Co., Ltd, Binzhou, 256600, China

*Author to whom correspondence should be addressed

E-mail: <u>xinx@sdu.edu.cn</u>. Phone: +86-531-88363597. Fax: +86-531-88361008

E-mail: hgli@sdu.edu.cn. Phone: +86-531-88363597. Fax: +86-531-88564750

1 Experimental Section

1.1 Materials

For the synthesis of G-SH-Cu NCs, we referenced the Andrey L. Rogach synthetic route¹. Polyvinyl Pyrrolidone (PVP), and copper sulfate (CuSO₄) were bought from Kermel Chemical Reagent Co. L-ascorbic acid (AA), and L-glutathione reduced (G-SH) were obtained from Sinopharm Chemical Reagent Co. TX-100 was purchased from Sigma. All of the reagents purchased have not been further purified. The ultra-pure water used in the experiment was all ion-exchanged by ultrapure water plants (Ulupure, China).

1.2 Preparation of Chiral Liquid Crystals

The mass of the G-SH-Cu NCs was fixed and the added volume was 2 mL, different qualities of achiral TX-100 were added to G-SH-Cu NCs solution with stirring. After the samples were placed for 24 hours at 20°C, the polarization appeared and the chiral liquid crystals were prepared. The concentration of G-SH-Cu NCs is 28 mg·mL⁻¹, according to the concentration we selected, the appropriate volume of G-SH-Cu NCs solution was selected and diluted with water, then add TX-100 with a weight percentage of 50%.

1.3 Instruments

Fluorescence data are tested by FLS920 luminescence spectrometer system (Edinburgh Instruments, United Kingdom, Xenon lamp, 450 W). Fourier transform infrared (FT-IR) spectra were measured on a Tensor II spectrophotometer (Bruker, Germany). POM observations were performed using an AXIOSKOP 40/40 FL (ZEISS, Germany) microscope. Rheological measurements were proceeded on a HAAKE RS6000 rheometer (Thermo Fisher Scientific, Germany) with a cone-plate

system (Material: Ti, oscillatory mode, diameter: 35 mm; cone angle: 1°). The frequency scan was confirmed to be performed in the linear viscoelastic region, as the stress scan have been performed at a fixed 1 Hz before frequency scan measurement. The temperature of characterization and measurements were 25.0 ± 0.5 °C, unless otherwise specified. Circular dichroism (CD) information and Circularly polarized luminescence (CPL) data were recorded on a Chirascan V100 circular dichroism spectrometer (Applied Photophysics, British), and the values of g_{lum} were averaged from the instrumental measurements at 455 nm to 465 nm. The UV-vis spectra were recorded on a Hitachi UV-vis 4100 spectrophotometer. Thermal gravity analysis (TGA) measurement was performed on a TGA5500 (TA, USA) at a scanning speed of 10 °C min⁻¹ in the temperature range of 30 to 700 °C under a nitrogen flow. ¹H NMR spectra were measured on a Bruker AVANCE III HD 400 MHz spectrometer (USA) at room temperature with tetramethylsilane (TMS) as reference. Small angle X-Ray scattering (SAXS) measurements were performed on the SAXSess mc2 system (Anton Paar, Austria) with Ni-filtered Cu K α radiation (1.54 Å) at 40 kV and 40 mA.

2 Additional Figures

Figure S1 Chiral properties of G-SH-Cu NCs: A) CD (top) spectra and absorbance (bottom) of G-SH-

Cu NCs. **B)** CPL (top) and luminescence spectra (bottom) of G-SH-Cu NCs, $\lambda_{ex} = 385$ nm.

Figure S2 PL (excitation wavelength 335 nm) spectra of G-SH-Cu NCs.

Figure S3 The CD spectra of TX-100 in water.

Figure S4 UV-visible absorption spectra of different mass ratios of TX-100 (wt%) in water.

Figure S5 Fluorescent spectra of G-SH-Cu NCs/TX-100 system ($\lambda ex = 335$ nm) at different concentrations of G-SH-Cu NCs (mg/mL).

Figure S6 POM images of A) 40wt% TX-100 and B) C) 50wt% TX-100 in water.

Figure S7 POM photos of different concentrations of G-SH-Cu NCs combinated with TX-100: **A**) **B**) 0.56 g·L⁻¹ G-SH-Cu NCs/50 wt% TX-100; **C**) **D**) 1.4 g·L⁻¹ G-SH-Cu NCs/50 wt% TX-100; **E**) **F**) 2.8 g·L⁻¹ G-SH-Cu NCs/50 wt% TX-100; **G**) **H**) 7 g·L⁻¹ G-SH-Cu NCs/50 wt% TX-100; **I**) **J**) 14 g·L⁻¹ G-SH-Cu NCs/50 wt% TX-100; **L**) **L**) 21 g·L⁻¹ G-SH-Cu NCs/ 50 wt% TX-100.

Figure S8 G 'and G "as a function of frequency: A) 28 g·L⁻¹G-SH-Cu NCs/40 wt% TX-100 systems; **B**) G-SH-Cu NCs/50 wt% TX-100 systems at different $c_{\text{G-SH-Cu NCs}}$ (g·L⁻¹).

Figure S9 The change of elastic modulus (G') and viscous modulus (G ") with the stress (F =1 Hz, T=25°C) of G-SH-Cu NCs/50 wt% TX-100 systems at different $c_{\text{G-SH-Cu NCs}}$ (g·L⁻¹).

Figure S10 The change of shear viscosity with shear rate of G-SH-Cu NCs/TX-100 system.

Figure S11 Complex modulus $|G^*|$ as a function of angular frequency (ω) of G-SH-Cu NCs/TX-100 system at different concentrations of G-SH-Cu NCs (g·L⁻¹).

Figure S12 Fourier transform infrared spectra of G-SH-Cu NCs/TX-100 system.

Figure S13 Chemical structure and ¹H NMR image of TX-100.

Table S1. The lattice parameters (D) for G-SH-Cu NCs/TX-100 hexagonal LCs at different

samples	TX-100	28 g·L ⁻¹ G-SH-Cu	2.24 g·L ⁻¹ G-SH-Cu
		NCs/50wt% TX-100	NCs/50wt% TX-100
q_1 (nm ⁻¹)	1.20	1.24	1.21
D (nm)	6.04	5.85	5.99

concentrations	of G-SH-Cu NCs	$(g \cdot L^{-1})$)
----------------	----------------	--------------------	---

Calculation of the interaction strength parameter (A) between molecules in lyotropic liquid

crystal (LLCs) based on the Bohlin cooperative flow theory

The quantitatively relationship between the microstructure of a flowing substance and its rheological properties could be determined by Bohlin cooperative flow theory which provides the link between the dynamic moduli and angular frequency ($_{0}$) concerning the interaction of molecules in LLCs by the following formula

$$|G^*| = \sqrt{G'^2 + G''^2} = A\omega^{\frac{1}{z}}$$

where $|G^*|$ is the complex modulus, A is defined as the interaction strength between molecules in LLCs, and z is a parameter considered as the "coordination number" of the interactive flow units.

References

[1] Z. Wang, A. S. Susha, B. Chen, C. Reckmeier, O. Tomanec, R. Zboril, H. Zhong, A. L. Rogach, Nanoscale 2016, 8, 7197-7202.