Supporting Information

Enhancing the Efficiency of PVDF-Based Piezoelectric Catalysis through Water-

Induced Polarization and Micro-Nano Composite Strategy

Haitao Li, *a Yingying Zhang, a,b Han Dai, Veronica Pereira, Junfeng Zhao*a and Hiang Kwee Lee*c, d

^aLaboratory of Advanced Light Alloy Materials and Devices, Postdoctoral Workstation of Nanshan Group Co., Ltd., Yantai Nanshan University,

Longkou 265713, China.

^bSchool of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.

^cDivision of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological

University, 21 Nanyang Link, 637371 Singapore

^dInstitute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03,

Innovis 138634, Singapore

Corresponding Author

E-mail address: htli@yzu.edu.cn (Haitao Li); zhaojunfengcc@163.com (Junfeng Zhao); hiangkwee@ntu.edu.sg (Hiang Kwee Lee)

Figure S1. TEM image of rGO.

Figure S2. SEM images of (a) self-polarized PVDF (SP) and (b) self-polarized rGO/PVDF (SP/rGO).

The calculation of β phase content and related crystallinity

(1) The calculation of β phase: FTIR absorption was assumed to obey the Lambert-Beer law, the amount of the β -phase (F(β)) of PVDF was calculated using Eq (S1)¹.

$$F(\beta) = \frac{A_{\beta}}{1.26A_{\alpha} + A_{\beta}} \times 100 \%$$

Here, A_{α} and A_{β} , respectively, correspond to the absorbance of the α (762 cm⁻¹) and β phases (839 cm⁻¹) of PVDF. The β phase content of original PVDF, SP and SP/rGO_{1.5} are 14%, 91%, 95%, respectively.

(S1)

(2) The calculation of related crystallinity: The crystallinities of original PVDF, SP and SP/rGO_{1.5} are calculated according to their temperature increase curves using Eq. $(S2)^2$.

$$X_{C} = \frac{\Delta H_{f}}{\Delta H_{f}^{*} \cdot \varphi} \times 100 \%$$
(S2)

Where ΔH_f is the sample enthalpy of fusion, calculated from heating DSC curve, ΔH^*_f is the heat of fusion of perfectly crystalline PVDF from literature (104.7 J g⁻¹) and ϕ is the weight fraction of PVDF in the samples. The crystallinity for original PVDF, SCP₀ and SCP_{1.5} are 23 %, 37%, 40%, respectively.

Figure S3. Piezoelectric current of (a) SP and (b) SP/rGO_{1.5}.

Figure S4. Contact angle images of a sessile water droplet on (a) SP and (b) SP/rGO_{1.5}.

Figure S5. Piezocatalytic degradation of 15 mL RhB solution (100 mg L⁻¹, pH=7, 30 °C) under 240 W ultrasonication. Comparison of normalized absorbance between 15 mg pristine PVDF and blank control.

Figure S6. Time-dependent plot of normalized RhB concentration (15 mL, 100 mg L^{-1} ; 30 $^{\circ}C$) under 240 W ultrasonication at different pH environment (1 - 13) and in the presence of SP/rGO_{1.5} (15 mg).

Figure S7. Time-dependent plot of normalized RhB concentration (15 mL; pH =7; 30 $^{\circ}$ C) under 240 W ultrasonication at different reaction temperature (10 - 40 $^{\circ}$ C) and in presence of SP/rGO_{1.5} (15 mg).

Figure S8. Time-dependent plot of normalized RhB concentration (15 mL; pH =7; 30 °C) under 240 W ultrasonication when using different water samples (DI water, tap water and sea water) and in the presence of SP/rGO_{1.5} (15 mg).

Figure S9. (a) DMPO- \cdot OH and (b) DMPO- \cdot O₂- obtained from SP/rGO_{1.5} with different ultrasonication time.

Figure S10. Comparison of $\rm H_2O_2$ production rate by SP/rGO_{1.5} over three successive cycles.

Figure S11. Time-dependent piezocatalytic H₂O₂ productions by rGO and pristine PVDF under 300 W ultrasonication.

Figure S12. Electrochemical impedance spectroscopy characterization of SP and SP/rGO_{1.5}.

Table S1. Comparison of the organic degradation and H_2O_2 production by SP/rGO_{1.5} with other previously

Material of catalyst, Synthesis method	Content of catalyst	Reaction solution	Frequency and power of ultrasound	Time , min	Degradation ratio, %	Generating rate of H_2O_2 , mmol g_{cat} -1 h-1
Nano kaolinite- MWCNT/PVDF film ³ one-step solution casting method	1x1cm	15 mL, 2.5 ppm RhB	33 kHz, 50 W	45	~96, 99	
Ag@LiNbO ₃ / PVDF ⁴ The solvent casting method	d=2.5 cm	10 mL, 10 mg/L MB	40 kHz, 70 W	180	~89	
αFe ₂ O ₃ /PVDF ⁵ electrospinning	7 mg	20 mL, 10 mg/L MB	18 kHz, 250 W	60	~60.4	
BNT/PVDF ⁶ , a "sol-gel-elec- trospinning" method	100 mg	100 mL, 50 mg/L RhB	45 kHz, 200 W	180	~76.6	
BNBT-x ⁷ , one-step sol- vothermal method.	100 mg	50 mL, 10 mg/L RhB	18 kHz, 250 W	60	~73	
PCN/PVDF-HFP ⁸	50 mg	8 mL H ₂ O containing 2mL EtOH	40 kHz, 300 W	120		0.668
SiO ₂ /PVDF-HFP ⁹	50 mg	8 mL H₂O containing 2mL FtOH	40 kHz, 300 W	60		0.492
CNT/PVDF ¹⁰	15 mg	15 mL, 40 mg L ⁻¹ RhB	40 kHz, 240 W	120	~98	
by nanosization	25 mg	containing 2mL EtOH	40 kHz, 300 W	120		13.51
rGO/PVDF	15 mg	15 mL, 100 mg L ⁻¹ RhB	40 kHz, 240 W	120	~93.7	
phase separation by nanosization	5 mg	8 mL H ₂ O containing 2mL EtOH	40 kHz, 300 W	120		95.8

reported piezoelectric catalysts.

Note and references

- S. Huang, S. Hong, Y. Su, Y. Jiang, S. Fukushima, T. M. Gill, N. E. D. Yilmaz, S. Tiwari, K.-i. Nomura, R. K. Kalia and Flame, Combust Flame, 2020, 219, 467-477.
- 2. C. Merlini, G. Barra, T. M. Araujo and A. Pegoretti, RSC Adv, 2014, **4**, 15749-15758.
- D. Mondal, S. Bardhan, N. Das, J. Roy, S. Ghosh, A. Maity,
 S. Roy, R. Basu and S. Das, Nano Energy, 2022, 104.
- 4. G. Singh, M. Sharma and R. Vaish, ACS Appl Mater Interfaces, 2021, **13**, 22914-22925.
- F. Orudzhev, S. Ramazanov, D. Sobola, P. Kaspar, T. Trčka, K. Částková, J. Kastyl, I. Zvereva, C. Wang, D. Selimov, R. Gulakhmedov, M. Abdurakhmanov, A. Shuaibov and M. Kadiev, Nano Energy, 2021, 90.

- 6. X. Zhou, Q. Sun, Z. Xiao, H. Luo and D. Zhang, J. Environ, 2022, **10**.
- L. Jiang, N. Xie, Y. Hou, H. Fu, J. Zhang, H. Gao and Y. Liao, Catal Commun, 2023, 181, 106735.
- Z. Chen, J. Zhuang, C. Liu, M. Chai, S. Zhang, K. Teng, T.
 Cao, Y. Zhang, Y. Hu, L. Zhao and Q. An,
 ChemElectroChem, 2022, 9.
- L. Wang, Z. Chen, Y. Zhang, C. Liu, J. Yuan, Y. Liu, W. Ge,
 S. Lin, Q. An and Z. Feng, Chem Asian J, 2022, 17, e202200278.
- 10. Y. Zhang, C. Chong, W. Tong, H. Li, H. K. Lee and J. Han, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, **677**.