Supplementary Material

Heterostructured *n*-ZnO@*p*-CuO nanosheets filled in

polymer matrix for enhanced electrostatic energy storage

performance

Weixuan Zhang, Yuqing Hu, Xin Zhang, Yingda Zhang, Jinzhang Liu*

School of Materials Science and Engineering, Beihang University, Beijing 100191,

China.

*Corresponding author.

E-mail Address: J. Z. Liu (ljz78@buaa.edu.cn).

Fig. S1. TEM image of a single ZnO nanosheet.

Fig. S2a, b, and c show high-resolution XPS Zn 2p, Cu 2p, and O 1s spectra collected from ZnO@CuO nanosheets. In Fig. S2a, two Zn 2p peaks at 1021.4 eV and 1044.5 eV are identified as Zn-O bonds of Zn^{2+} in ZnO. In Fig. S2b, the two peaks at 933.1 eV and 952.2 eV are fitted with Cu $2p_{3/2}$ and Cu $2p_{1/2}$ respectively, and the peaks at 961.9–962.3eV and 940.5-943.7 eV are the satellite peaks of CuO^{S1}. In Fig. S2c, two peaks at 530.3 eV and 532.3 eV are related to metal-oxygen bonds in ZnO and CuO.

Fig. S2. High-resolution (a) Zn 2p, (b) Cu 2p, and (c) O1s XPS spectra of ZnO@CuO nanosheets.

Fig. S3 exhibits the cross-sectional SEM images of ZnO@CuO/P(VDF-HFP) nanocomposites with different filler contents. The average thickness of the films is

about 15 μ m, and the fillers were uniformly distributed in the polymer matrix without obvious agglomeration.

Fig. S3. Cross-sectional SEM images of ZnO@CuO/P(VDF-HFP) nanocomposites with (a) 1 wt%, (b) 3 wt%, (c) 5 wt%, and (d) 7 wt% ZnO@CuO nanosheets.

Fig. S4 shows the phase contents of pure P(VDF-HFP) and ZnO@CuO/P(VDF-HFP) films filled with different filler contents. The relative fraction of γ phase can be calculated by:

$$F(\gamma) = \frac{A_{\gamma}}{(K_{\gamma}/K_{\alpha})A_{\alpha} + A_{\gamma}}$$
(S1)

Where A_{γ} and A_{α} are the absorption intensities of γ and α phases at 835 and 763 cm⁻¹, respectively; K_{γ} and K_{α} are the absorption coefficients at the respective wavenumber, which are 7.7×10^4 and 6.1×10^4 cm²/mol, respectively.^{S2}

Fig. S4. Contents of α and γ phases in pure P(VDF-HFP) and ZnO@CuO/P(VDF-HFP) films with different filler contents.

Fig. S5 shows the variations of dielectric constant and dielectric loss with increasing the frequency for pure P(VDF-HFP) and ZnO/P(VDF-HFP) nanocomposites with different filler contents. With increasing the filler content from 0 to 5wt%, the dielectric constant and loss were increased slowly. However, the two parameters were abruptly increased when the filler content reaches 7 wt%. It implies that the use of ZnO nanosheet filler requires a larger content to enhance the dielectric constant.

Fig. S6 shows the Weibull distribution of electric breakdown strength of pure P(VDF-HFP) and ZnO/P(VDF-HFP) nanocomposites with different filler contents. Compared with the pure P(VDF-HFP), the breakdown strengths of the nanocomposites were slightly improved, and then decreased. The film with filler

content of 1 wt% exhibits the largest breakdown strength among the ZnO/P(VDF-HFP) nanocomposites.

Fig. S5. Dependences of (a) dielectric constant and (b) dielectric loss on frequency for pure P(VDF-HFP) and ZnO/P(VDF-HFP) nanocomposites with different filler contents.

Fig. S6. Weibull distribution of electric breakdown strength of pure P(VDF-HFP) and ZnO/P(VDF-HFP) nanocomposites with different filler content.

In Fig. S7, the D-E loops were collected from a pure P(VDF-HFP) film. The electric breakdown strength of a P(VDF-HFP) film is around 200 MV m⁻¹. In addition, more D-E loops were collected from ZnO@CuO/P(VDF-HFP) films with filler contents ranging from 1 wt% to 7 wt%, as shown in Fig. S8. The use of 3 wt% filler content leads to the highest electric breakdown strength. For further comparison, D-E loops collected from a group of ZnO/P(VDF-HFP) films are shown in Fig. S9.

Fig. S7. D-E loops of pure P(VDF-HFP) at different electric fields.

Fig. S8. D-E loops of ZnO@CuO/P(VDF-HFP)nanocomposites with (a) 1 wt%, (b) 3 wt%, (c) 5 wt%, and (d) 7 wt% filler content at different electric fields.

Fig. S9. D-E loops of ZnO/P(VDF-HFP)nanocomposites with (a) 1 wt%, (b) 3 wt%,(c) 5 wt%, and (d) 7 wt% filler content at different electric fields.

Fig. S10 exhibits the dielectric energy storage properties of ZnO/P(VDF-HFP) nanocomposites with different filler content. Fig. S10a shows dependences of discharged energy density U_d and charge-discharge efficiency η on the electric filed strength for ZnO/P(VDF-HFP) films. The film with filler content of 3 wt% exhibits largest highest U_d of 1.48 J cm⁻³ at 250 MV m⁻¹ with η of 52% among the ZnO/P(VDF-HFP) nanocomposites. Fig. S10b shows dependences of maximum and remnant electric displacements on the ZnO nanosheet content and the ZnO/P(VDF-HFP) composite film with 3 wt% filler content exhibits the highest ($D_{max} - D_r$), as

1.46 μ C cm⁻². The results of calculated C_{loss} and F_{loss} for ZnO/P(VDF-HFP) films are shown in Fig. S10c and d, respectively.

Fig. S10. (a) Discharged energy density U_d and efficiency η , (b) maximum and remnant electric displacement, (c) conduction loss, and (d) ferroelectric loss of ZnO/P(VDF-HFP) nanocomposites with different filler content.

Fig. S11. Electrical conductivities of ZnO/P(VDF-HFP) and ZnO@CuO/P(VDF-HFP) composite films with different filler contents.

References

- [S1] X. Liu, X. Lu, H. Guan, X. Liu, Y. Wang, D. Zhao and M. Wang, Ceram. Int., 2022, 48, 6948–6955.
- [S2] R. Gregorio, and M. Cestari, J. Polym. Sci. Part B Polym. Phys., 1994, 32, 859– 870.