HZO-strain-Nanoscale-Ye *et al.*

Supplementary Materials

Theoretical Understanding of the In-plane Tensile Strain Effects on Enhancing the Ferroelectric Performance of Hf0.5Zr0.5O2 and ZrO2 Thin Films

Kun Hee Ye^{1,2}, Taeyoung Jeong^{1,2}, Seungjae Yoon^{1,2}, Dohyun Kim^{1,2}, Cheol Seong Hwang^{*,2}, and Jung-Hae Choi^{*,1}

1Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea

2Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Korea

**Corresponding author;*

Tel.: +82 2 880 7535. Fax: +82 2 884 1413

E-mail address: cheolsh@snu.ac.kr *(C. S. Hwang)*

Tel.: +82 2 958 5488. Fax: +82 2 958 6658

E-mail address: choijh@kist.re.kr *(J.-H. Choi)*

Figure S1. ε_i _{111}} of the PO-(111) (blue), M-(111) (black), and M-($\overline{1}11$) (gray) as a function of ε {111} (lower x-axis) and A^{strained} (upper x-axis) in (a) Hf_{0.5}Zr_{0.5}O₂ and (b) ZrO₂. ε _{i-{111}} is defined

as $A_{i-\{111\}}^{statile}$ strained Ai−{111} $\frac{-\{111\}}{\text{equil}}$ – 1, where $A_{i-\{111\}}^{\text{equil}}$ represents the equilibrium in-plane area of the i-phase. $\varepsilon_{\{111\}} =$

� equil strained $T-(111)$ - 1 is also shown in red as a guide.

Notes for Figure S1: Due to the discrepancies in lattice parameters and consequent $A_{i-\{111\}}^{equil}$ among polymorphs in Table I, $\varepsilon_{i-\{111\}}$ values also differ among polymorphs for a given $A_{i-\{111\}}^{strained}$ and $\varepsilon_{\{111\}}$. In Hf_{0.5}Zr_{0.5}O₂, for instance, $\varepsilon_{M-(111)}$ is always negative, indicating the M-(111) undergoes the in-plane compressive strain compared to the M-phase in equilibrium for all $\varepsilon_{\{111\}}$ range investigated. On the other hand, the M- (111) is under in-plane tensile strain (i. e., positive $\varepsilon_{M-(111)}$) at $\varepsilon_{\{111\}}$ > -0.005, while under in-plane compressive strain (i. e., negative $\varepsilon_{M-(111)}$) at $\varepsilon_{\{111\}}$ < -0.01 compared to the M-phase in equilibrium.

Figure S2. F_i^{vib} of (a,b) T-(111), (c,d) PO-(111), (e,f) M-(111), and (g,h) M-(111) depending on temperature in (a,c,e,g) $Hf_{0.5}Zr_{0.5}O_2$ and (b,d,f,h) ZrO_2 . The color bar represents the scale of $\varepsilon_{\{111\}}$.

Figure S3. (a) Temperature- and configuration-dependent F_T^{vib} of the T-phase $Hf_{0.5}Zr_{0.5}O_2$. The cation configurations of the T-phase $Hf_{0.5}Zr_{0.5}O_2$ are represented in (b~d).

Figure S4. $\gamma_{i,\{111\}}$ of T-(111), O-(111), M-(111), and M-(111) depending on $\varepsilon_{\{111\}}$ in (a) $Hf_{0.5}Zr_{0.5}O_2$ and (b) ZrO_2 . The O-(111) represents the (111) plane of the antipolar orthorhombic structure.

Figure S5. $F_{\text{i,grain}}$ at 1000 K for the T-(111), PO-(111), M-(111), and M-($\overline{1}11$) grains as a function of $\varepsilon_{\{111\}}$ (lower x-axis) and $A_{i-\{111\}}^{strained}$ (upper x-axis) in (a) $Hf_{0.5}Zr_{0.5}O_2$ and (b) ZrO_2 .

Figure S6. (a,b) ε{111}-dependent Ei,bulk of ZrO2 calculated by (a) LDA and (b) PBEsol functionals. (c,d) Temperature-dependent *F*i,bulk of ZrO2 calculated by (c) LDA and (d) PBEsol functionals.

Figure S7. Energy profiles during the nucleation of a single unitcell of M- and PO-phases in $3\times3\times3$ T-phase supercell using the nudged elastic band method.

Figure S8. Conventional unit cell volume of the T-(111), PO-(111), M-(111), and M-($\overline{1}11$) grains depending on ε _{111} in (a) Hf_{0.5}Zr_{0.5}O₂ and (b) ZrO₂.

Figure S9. *T*-dependent phase fraction of the T-, M-, and PO-phases crystallized from amorphous $(C_{T,crystn}$, $C_{M,crystn}$, and $C_{PO,crystn}$) in (a) $Hf_{0.5}Zr_{0.5}O_2$ and (b) ZrO_2 .

Notes for Figure S9: The crystallization rate, R_{i,crystn}, was calculated as;

$$
R_{\text{i,crystn}} = N_s v_0 \exp\left(\frac{-\Delta F_1^*}{k_B T_{\text{crystn}}}\right)
$$

, where the ΔF_i^* is the crystallization barrier of the i-phase described in the previous study [1]. The differences in pre-exponential factors of *Ns* (the number of nucleation sites) and *ν*⁰ among polymorphs were assumed to be negligible. Using the R_{i,crystn}, C_{i,crystn} was calculated by the following equation.

$$
C_{i,crystn} = \frac{R_{i,crystn}}{R_{M,crystn} + R_{T,crystn} + R_{PO,crystn}}
$$

Figure S10. ε_{111} -dependent equilibrium temperatures of M- and PO-phases (*T*_{equil,M} and *T*_{equil,PO}) in (a) Hf0.5Zr0.5O2 and (b) ZrO2.

References

[1] K.H. Ye, I.W. Yeu, G. Han, T. Jeong, S. Yoon, D. Kim, C.S. Hwang, and J.H. Choi, "Comprehensive interpretations of thermodynamic and kinetic effects on the phase fractions in $Hf_{1-x}Zr_xO_2$ by first principle calculations," *Appl. Phys. Rev.* **10**, 031419 (2023).