HZO-strain-Nanoscale-Ye et al.

Supplementary Materials

Theoretical Understanding of the In-plane Tensile Strain Effects on Enhancing the Ferroelectric Performance of Hf_{0.5}Zr_{0.5}O₂ and ZrO₂ Thin Films

Kun Hee Ye^{1,2}, Taeyoung Jeong^{1,2}, Seungjae Yoon^{1,2}, Dohyun Kim^{1,2}, Cheol Seong Hwang^{*,2}, and Jung-Hae Choi^{*,1}

¹Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea

²Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Korea

**Corresponding author;*

Tel.: +82 2 880 7535. *Fax:* +82 2 884 1413

E-mail address: cheolsh@snu.ac.kr (C. S. Hwang)

Tel.: +82 2 958 5488. *Fax*: +82 2 958 6658

E-mail address: choijh@kist.re.kr (J.-H. Choi)

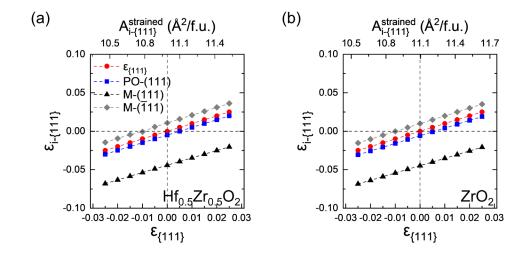
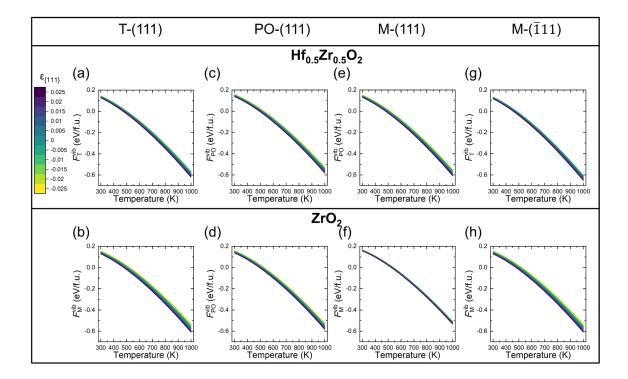
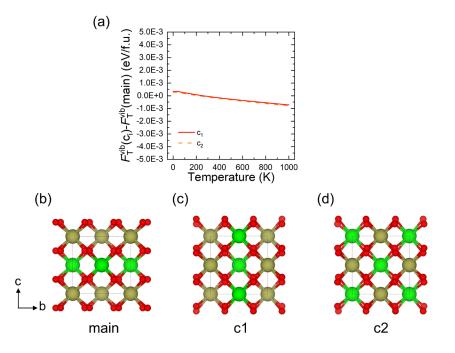



Figure S1. $\varepsilon_{i-\{111\}}$ of the PO-(111) (blue), M-(111) (black), and M-($\overline{1}11$) (gray) as a function of $\varepsilon_{\{111\}}$ (lower x-axis) and A^{strained}_{i-{111}} (upper x-axis) in (a) Hf_{0.5}Zr_{0.5}O_2 and (b) ZrO₂. $\varepsilon_{i-{111}}$ is defined


as $\sqrt{\frac{A_{i-\{111\}}^{strained}}{A_{i-\{111\}}^{equil}}} - 1$, where $A_{i-\{111\}}^{equil}$ represents the equilibrium in-plane area of the i-phase. $\varepsilon_{\{111\}} = \varepsilon_{\{111\}}$

 $\sqrt{\frac{A_{i-\{111\}}^{\text{strained}}}{A_{T-(111)}^{\text{equil}}}} - 1 \text{ is also shown in red as a guide.}$

Notes for Figure S1: Due to the discrepancies in lattice parameters and consequent $A_{i-\{111\}}^{equil}$ among polymorphs in Table I, $\varepsilon_{i-\{111\}}$ values also differ among polymorphs for a given $A_{i-\{111\}}^{strained}$ and $\varepsilon_{\{111\}}$. In Hf_{0.5}Zr_{0.5}O₂, for instance, $\varepsilon_{M-(111)}$ is always negative, indicating the M-(111) undergoes the in-plane compressive strain compared to the M-phase in equilibrium for all $\varepsilon_{\{111\}}$ range investigated. On the other hand, the M-($\overline{1}11$) is under in-plane tensile strain (i. e., positive $\varepsilon_{M-(\overline{1}11)}$) at $\varepsilon_{\{111\}} > -0.005$, while under in-plane compressive strain (i. e., negative $\varepsilon_{M-(\overline{1}11)}$) at $\varepsilon_{\{111\}} < -0.01$ compared to the M-phase in equilibrium.

Figure S2. F_i^{vib} of (a,b) T-(111), (c,d) PO-(111), (e,f) M-(111), and (g,h) M-($\overline{1}11$) depending on temperature in (a,c,e,g) Hf_{0.5}Zr_{0.5}O₂ and (b,d,f,h) ZrO₂. The color bar represents the scale of $\varepsilon_{\{111\}}$.

Figure S3. (a) Temperature- and configuration-dependent F_T^{vib} of the T-phase Hf_{0.5}Zr_{0.5}O₂. The cation configurations of the T-phase Hf_{0.5}Zr_{0.5}O₂ are represented in (b~d).

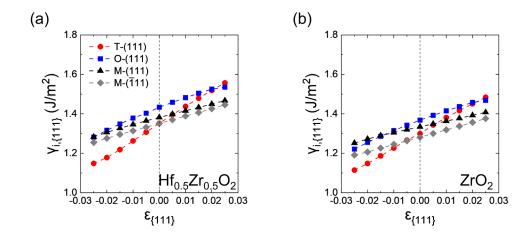
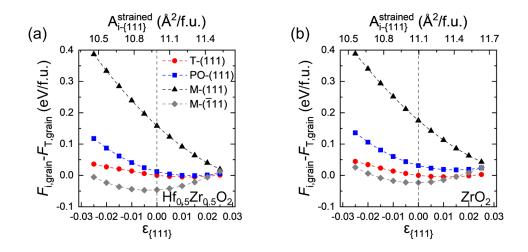
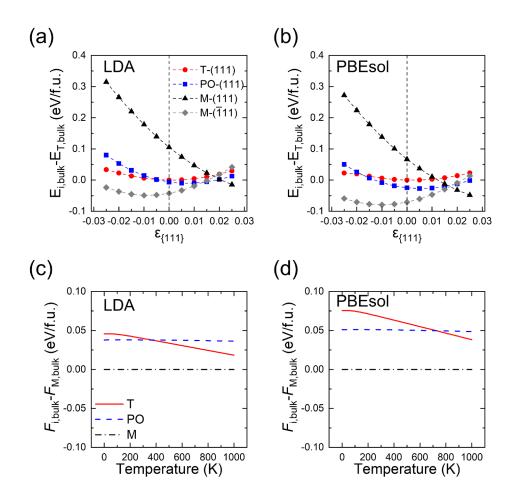
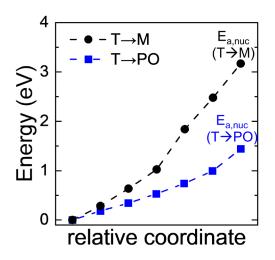
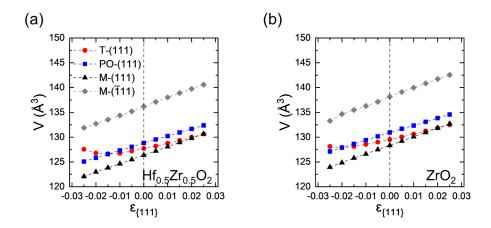


Figure S4. $\gamma_{i,\{111\}}$ of T-(111), O-(111), M-(111), and M-($\overline{1}11$) depending on $\epsilon_{\{111\}}$ in (a) Hf_{0.5}Zr_{0.5}O₂ and (b) ZrO₂. The O-(111) represents the (111) plane of the antipolar orthorhombic structure.


Figure S5. $F_{i,grain}$ at 1000 K for the T-(111), PO-(111), M-(111), and M-($\overline{1}11$) grains as a function of $\epsilon_{\{111\}}$ (lower x-axis) and $A_{i-\{111\}}^{strained}$ (upper x-axis) in (a) Hf_{0.5}Zr_{0.5}O₂ and (b) ZrO₂.

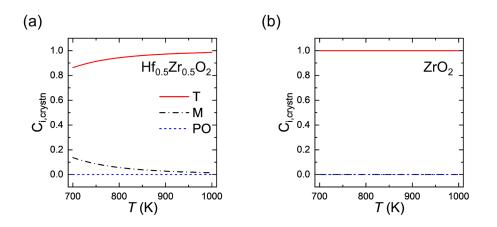
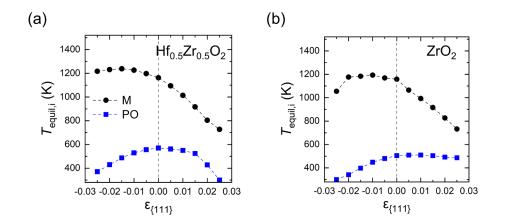

Figure S6. (a,b) $\varepsilon_{\{111\}}$ -dependent $E_{i,bulk}$ of ZrO₂ calculated by (a) LDA and (b) PBEsol functionals. (c,d) Temperature-dependent $F_{i,bulk}$ of ZrO₂ calculated by (c) LDA and (d) PBEsol functionals.

Figure S7. Energy profiles during the nucleation of a single unitcell of M- and PO-phases in $3 \times 3 \times 3$ T-phase supercell using the nudged elastic band method.

Figure S8. Conventional unit cell volume of the T-(111), PO-(111), M-(111), and M-($\overline{1}11$) grains depending on $\varepsilon_{\{111\}}$ in (a) Hf_{0.5}Zr_{0.5}O₂ and (b) ZrO₂.


Figure S9. *T*-dependent phase fraction of the T-, M-, and PO-phases crystallized from amorphous (C_{T,crystn}, C_{M,crystn}, and C_{PO,crystn}) in (a) Hf_{0.5}Zr_{0.5}O₂ and (b) ZrO₂.

Notes for Figure S9: The crystallization rate, R_{i,crystn}, was calculated as;

$$R_{\rm i,crystn} = N_{\rm s} v_0 \exp\left(\frac{-\Delta F_{\rm i}^*}{k_B T_{\rm crystn}}\right)$$

, where the ΔF_i^* is the crystallization barrier of the i-phase described in the previous study [1]. The differences in pre-exponential factors of N_s (the number of nucleation sites) and v_0 among polymorphs were assumed to be negligible. Using the $R_{i,crystn}$, $C_{i,crystn}$ was calculated by the following equation.

$$C_{i,crystn} = \frac{R_{i,crystn}}{R_{M,crystn} + R_{T,crystn} + R_{PO,crystn}}$$

Figure S10. $\varepsilon_{\{111\}}$ -dependent equilibrium temperatures of M- and PO-phases ($T_{equil,M}$ and $T_{equil,PO}$) in (a) Hf_{0.5}Zr_{0.5}O₂ and (b) ZrO₂.

References

[1] K.H. Ye, I.W. Yeu, G. Han, T. Jeong, S. Yoon, D. Kim, C.S. Hwang, and J.H. Choi, "Comprehensive interpretations of thermodynamic and kinetic effects on the phase fractions in Hf_{1-x}Zr_xO₂ by first principle calculations," *Appl. Phys. Rev.* **10**, 031419 (2023).