
GeSe-embedded metal-oxide double heterojunctions for facilitating self-biased and efficient NIR photodetection.

Muhammad Hussain^{a,f}, Sohail Abbas^b, Usama Waleed Qazi^c, Muhammad Riaz^a, Asif Ali^a, Fazal Wahab^d, Anis Ftima^e, Sajjad Hussain^a Zdenek Sofer^f & Jongwan Jung^{a*}

^a Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, 05006, South Korea.

- ^b Department of Electrical Engineering, Riphah International University, Islamabad, Pakistan.
- ^c Department of Mechanical Engineering, Institute of Space Technology, Islamabad, Pakistan.
- ^d Department of Physics, Karakoram International University, Gilgit, Pakistan.
 ^e Department of Chemistry, University of Wah, Punjab, Pakistan.
- ^f Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.

*Corresponding author: jwjung@sejong.ac.kr

Figure S1. (a-h) X-ray photoelectron spectroscopy (XPS; PHI 5000 Versa Probe) under Al K α at 25 W and 6.7 × 10⁻⁸ Pa was used to confirm the chemical composition and binding energy of the NiO and GeSe film on Si.

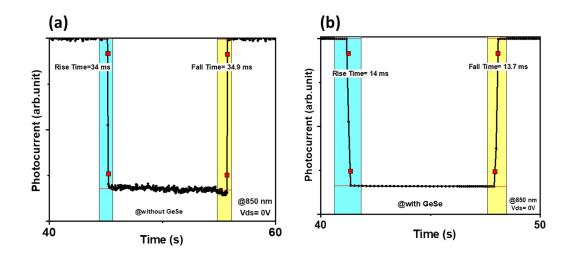


Figure S2: Response speed of the devices: (a) without GeSe interlayer and (b) with GeSe layer