Supporting Information

Negative Photoconductivity Photodetector based on two-dimesional Nb₃Cl₈

Bom Lee^{a,†}, Xiaojie Zhang^{a†}, Jinsu Kang^a, Byung Joo Jeong^a, Sooheon Cho^a, Kyung Hwan choi^b, Jiho Jeon^b, Sang Hoon Lee^a, Dahoon Kim^a, Yeong Hyeop Kim^a, Ji-Hee Kim^{c,*}, Hak Ki Yu^{d,*}, and Jae-Young Choi^{a,b,*}

^aSchool of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

^bSKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea

^cDepartment of Physics, Pusan National University, Busan 46241, Republic of Korea.

^dDepartment of Materials Science and Engineering & Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea.

Fig. S1. Materials stability characteristic of Nb₃Cl₈

Fig. S2. Device stability characteristic of 8.72 nm thick Nb₃Cl₈ FET

Fig. S3. Energy band diagram showing the photoresponse process within the Nb₃Cl₈

In process (1), electrons in the valence band (E_v) absorb photon energy and are excited to the conduction band (E_c), generating electron-hole pairs and increasing the hole concentration. This represents the conventional photoexcitation mechanism. Concurrently, process (2) involves the excitation of electrons from trap levels (E_{trap}) within the bandgap to the conduction band. However, the key to the observed negative photoconductivity lies in process (3), where photo-induced electrons recombine with holes in the valence band through these trap states, effectively reducing the overall hole concentration. This recombination process, facilitated by the presence of trap levels, is the primary driver of the decrease in conductivity under illumination, leading to the NPC phenomenon in Nb₃Cl₈.

Fig. S4. Hysteresis loop in the transfer characteristics of Nb₃Cl₈

Fig. S5. Transfer characteristics $(I_{ds}-V_g)$ of Nb₃Cl₈ nanosheets, obtained by sweeping the gate voltage from -40 to 40 V under dark and ligh at fixed V_{ds} of 1 V.

Fig. S6. I_{ds} - V_{ds} curve of the Nb₃Cl₈ in the dark mode and under light illumination with different wavelength from 400 to 1050 nm

Fig. S7. Time-resolved photo response of the Nb₃Cl₈ at $V_{ds} = 3$ V under different wavelength ranges (450-1050 nm) with a power density of 1.54 mW/cm².

Fig. S8. Wavelength dependent EQE at $V_{ds} = 3 \text{ V}$ and power density = 1.54 mW/cm².

Fig. S9. Photocurrent stability characteristic of 8.72 nm thick Nb₃Cl₈ FET

Fig. S10. Time-resolved photoresponse in vacuum condition at $V_{ds} = 3$ V and power density = 1.54 mW/c

Fig S11. Thickness-dependent responsivity of Nb₃Cl₈ nanoflakes.

Material	Bias Voltage (V)	Wavelength (nm)	Source	Responsivity (mA/W)	Detectivity (Jones)	Response Time rise/decay (ms/ms)	Ref.
MoTe ₂ /hBN/graphene	-	635	light	~500	$\sim 1.6 \times 10^{12}$	~3	[1]
WTe ₂ /GaAs	0.6	1064	laser	271	9.18 x 10 ¹¹	-	[2]
InAs	0.1	700	laser	1.231 x 10 ⁶	5.46 x 10 ¹⁰	150/50	[3]
MoS ₂	2	650	laser	8.44 x 10 ⁶	-	500	[4]
$WSe_2/SnSe_2$	2	532	laser	2 x 10 ⁷	2.15×10^{12}	1 x 10 ⁻³ /5 x 10 ⁻³	[5]
Graphene/InSe	1	365	light	1.88 x 10 ⁸	-	22	[6]
WS ₂ /RGO	-	808	laser	6 x 10 ³	-	$3.6 \times 10^4 / 5.4 \times 10^4$	[7]
PtTe ₂	-	808	laser	600	2.1 x 10 ⁸	340/380	[8]
ReS ₂ /PdSe ₂	-	638	laser	5.32 x 10 ⁵	-	7.9 x 10 ⁻³ /8.7 x 10 ⁻³	[9]
ReSe ₂ /AZO	0.1	365	laser	150	2.4 x 10 ¹⁰	-	[10]
Nb ₃ Cl ₈	3	400	light	156.82	4.7 x 10 ⁹	1.45 /1.40	this work

Table. S1. Comparison table of key parameters of 2D NPC

Reference

- 1. F. Liu, X. Lin, Y. Yan, X. Gan, Y. Cheng and X. Luo, *Nano Letters*, 2023, 23, 11645–11654.
- 2. J. Wang, H. Wang, Q. Chen, L. Qi, Z. Zheng, N. Huo, W. Gao, X. Wang and J. Li, *Applied Physics Letters*.
- X. Wang, D. Pan, M. Sun, F. Lyu, J. Zhao and Q. Chen, ACS Applied Materials & Interfaces, 2021, 13, 26187–26195.
- 4. Y. Sun, Y. Wang, Z. Wang, L. Jiang, Z. Hou, L. Dai, J. Zhao, Y. Xie, L. Zhao and Z. Jiang, *Advanced Functional Materials*, 2024, 2402185.
- S. Ghosh, A. Varghese, H. Jawa, Y. Yin, N. V Medhekar and S. Lodha, ACS nano, 2022, 16, 4578– 4587.
- 6. B. Cui, Y. Xing, K. Niu, J. Han, H. Ma, W. Lv, T. Lei, B. Wang and Z. Zeng, *Journal of Science: Advanced Materials and Devices*, 2022, 7, 100484.
- 7. S. Ratha, A. J. Simbeck, D. J. Late, S. K. Nayak and C. S. Rout, Applied Physics Letters.
- 8. H. Zhang, L. Du, X. Zhong, W. Wu, Z. Fu, W. Sun, J. Liu, X. Song, J. Zhang and Z. Dai, *Sensors and Actuators A: Physical*, 2024, **371**, 115324.
- 9. P. Li, Y. Sun, X. Gao, Y. Meng, J. Ma, J. Wang, H. Gao, C. Du, W. Wang and K. Li, *Materials Today Communications*, 2024, **40**, 109945.
- 10. J. Guo, W. Lei, Y. Zhao, Z. Tan and W. Xie.