Supporting information for

Sustainable and Energy-Saving Hydrogen Production via Binder-free and In-situ Electrodeposited Ni-Mn-S Nanowires on Ni-Cu 3-D Substrate

Ghasem Barati Darbanda*, Danial Iravani^b, Meiling Zhang^c, Meysam Maleki^d, Shanrui Huang^c,

Reza Andaveh^e, Seyyed Mehdi Khoshfetrat^f, Jinyang Li^{c,g*}

a- Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111, Iran

b- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

c- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China

d- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec H4B 1R6, Canada

e- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9 Canada

f- Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Borujerd, Iran

g- Yibin Institute of Southwest Jiaotong University, Yibin 644000, China

* Corresponding authors

Ghasem Barati Darband: <u>baratidarband@um.ac.ir</u>

Jinyang Li: jinyang.li@swjtu.edu.cn.

Table S1: Composition of electrolyte for deposition of Ni-Cu nano-micro dendrites

Materials	Concentration (M)
NiSO ₄ .6 H ₂ O	0.5
$CuSO_4.5 H_2O$	0.01
HCl	1
H_2SO_4	1.5

Table S2: Composition of electrolyte for deposition of Ni-Cu nano-micro dendrites

Materials	Concentration
NiCl ₂ .6 H ₂ O	5 mM
$MnCl_2.4 H_2O$	5 mM
H_2NCSNH_2	0.075 M

Fig. S1. FESEM and EDX images of Ni-Mn-S/Ni-Cu samples fabricated at different coating cycles: (a) 3, (b) 5, and (c) 20 cycles.

Figure S2: LSV curves of different electrodes.

Figure S3: Nyquist curves at different overpotentials of optimized electrode.

Figure S4: dynamic specific resistance at fixed frequency.

Catalyst	Substrate	Tafel slope (mV dec-1)	Overpotential (mV)	Stability	Ref.
Mo-NiSx/NF	NF	88.0	$\eta 10 = 155$	50 h at 10 mA cm-2	[1]
V-Ni3N	NF	28.7	$\eta 10 = 15$	24 h at 10 mA cm-2	[2]
NiCu/NiMn(OH)2	NF	31.0	$\eta 10 = 17$	50 h at 10 mA cm-2	[3]
S-Ni@Ni(OH)2/NF	NF	74.0	$\eta 10 = 50$	15 h at 80 mV	[4]
Ni-Co-Fe-P	NF	67.0	$\eta 10 = 64$	100 h at 100 mA cm-2	[5]
MnCo/NiSe	NF	45.1	$\eta 10 = 22$	200 h at 500 mA cm-2	[6]
NiMo@Ni(OH)2MoOx	GR	115.0	$\eta 100 = 160$	24 h at 100 mA cm-2	[7]
NiCoSeP	NF	59.0	$\eta 10 = 52$	15 h at 500 mA cm-2	[8]
P-doped NiSe	NF	117.0	$\eta 10 = 90$	100 h at 100 mA cm-2	[9]
Nanoporous Ni-Se	GR	126.0	$\eta 10 = 100$	12 h at 100 mA cm-2	[10]
Ni-P/Ni(OH)2 NTs	NF	58.0	$\eta 10 = 55$	30 h at 10 mA cm-2	[11]
NiMn1.5PO4/NF	NF	43.0	$\eta 10 = 72$	50 h at 10 mA cm-2	[12]
O-NiCoP/Ni2P	NF	68.8	$\eta 10 = 58$	24 h at 10 mA cm-2	[13]
Ni-Mo-O/Ni4Mo@NC	СР	99.0	$\eta 10 = 61$	15 h at 10 mA cm-2	[14]
V-doped NiSe/Ni3Se2	NF	70.0	$\eta 100 = 175$	11 h at 100 mA cm-2	[15]
NiSe2-Ni2P/NF	NF	68.0	$\eta 10 = 102$	25 h at 150 mV	[16]
N: M. S/NI: C/10	NIE	01.0	10 54	24 h at 100 mA	This
N1-MIN-S/N1-Cu/10 NF	81.0	η10 =64	cm-2	work	

Table S3: Comparison of HER properties for different electrocatalysts in 1.0 M KOH solution.

Catalyst	Substrate	Solution	Tafel slope (mV dec ⁻¹)	Potential vs. RHE (V)	Stability	Ref.
Co ₂ P/NiMoO ₄ /NF	NF	1.0 M KOH + 0.50 M urea	75.0	$E_{10} = 1.34$	50 h at 1.37 V	[17]
Ni ₃ N/Mo ₂ N	NF	1.0 M KOH + 0.33 M urea	34.7	E ₁₀₀ = 1.36	40 h at 120 mA cm ⁻²	[18]
Ni-Mn-Se	NF	1.0 M KOH + 0.33 M urea	58.2	E ₁₀₀ = 1.44	50 h at 200 mA cm ⁻²	[19]
W-NiS ₂ /MoO ₂ @CC	CC	1.0 M KOH + 0.33 M urea	24.1	$E_{10} = 1.30$	24 h at 1.40 V	[20]
NF/PPy ₇₀₀ -Ni ₃ S ₂ -8-Ar	NF	1.0 M KOH + 0.33 M urea	20.0	E ₂₀ = 1.35	12 h at 20 mA cm ⁻²	[21]
FeNi ₃ -MoO ₂ /NF	NF	1.0 M KOH + 0.50 M urea	30.1	$E_{10} = 1.29$	120 h at 500 mA cm ⁻²	[22]
Mo-doped Ni_3S_2	NF	1.0 M KOH + 0.30 M urea	28.1	E ₁₀ = 1.33	120 h at 10 mA cm ⁻²	[23]
Ni ₉ S ₈ /CuS/Cu ₂ O	NF	1.0 M KOH + 0.33 M urea	64.0	$E_{10} = 1.36$	20 h at 1.36 V	[24]
NiCo ₂ S ₄ /CC	CC	1.0 M KOH + 0.33 M urea	172.0	$E_{50} = 1.43$	10 h at 1.37 V	[25]
NiCo-BDC/Ni-S	NF	1.0 M KOH + 0.33 M urea	58.2	$E_{10} = 1.31$	52 h at 10 mA cm ⁻²	[26]
P-CoS _x (OH) _y NN/Ti	TM	1.0 M KOH + 0.50 M urea	104.0	$E_{10} = 1.30$	40 h at 1.48 V	[27]
Ni(OH)₂@NF	NF	1.0 M KOH + 0.30 M urea	24.4	E ₁₀ = 1.35	40 h at 10 mA cm ⁻²	[28]
$Ni_4N/Cu_3N/CF$	CF	1.0 M KOH + 0.50 M urea	55.7	$E_{10} = 1.34$	10 h at 100 mA cm ⁻²	[29]
Ni ₃ N/NF	NF	1.0 M KOH + 0.50 M urea	41.0	$E_{10} = 1.34$	36 h at 1.37 V	[30]
NiFeCo LDH/NF	NF	1.0 M KOH + 0.33 M urea	31.0	E ₁₀ = 1.35	50 h at 10 mA cm ⁻²	[31]
NiFe(OH) ₂ -SD/NF	NF	1.0 M KOH + 0.50 M urea	41.0	E ₁₀ = 1.32	24 h at 10 mA cm ⁻²	[32]
Ni-Mn-S/Ni-Cu/10	NF	1.0 M KOH + 0.33 M urea	87.0	E ₁₀ = 1.247	24 h at 100 mA cm $^{-2}$	This work

Table S4: Comparison of UOR properties for different electrocatalysts.

Catalyst	Substrate	Solution	Cell potential vs. RHE (V)	Stability	Ref.
Ni ₃ N/Mo ₂ N	NF	1.0 M KOH + 0.33 M urea	$\Delta E_{10} = 1.36$	50 h at 10 mA cm ⁻²	[18]
Ni-Mn-Se	NF	1.0 M KOH + 0.33 M urea	ΔE ₁₀₀ = 1.62	50 h at 50 mA cm ⁻²	[19]
W-NiS ₂ /MoO ₂ @CC	CC	1.0 M KOH + 0.33 M urea	ΔE ₁₀ = 1.37	24 h at 1.40 V	[20]
NF/PPy ₇₀₀ -Ni ₃ S ₂ -8-Ar	NF	1.0 M KOH + 0.33 M urea	ΔE ₂₀ = 1.50	20 h at 1.60 V	[21]
FeNi ₃ -MoO ₂ /NF	NF	1.0 M KOH + 0.50 M urea	ΔE ₁₀ = 1.37	70 h at 100 mA cm ⁻²	[22]
Mo-doped Ni_3S_2	NF	1.0 M KOH + 0.30 M urea	ΔE ₁₀ = 1.45	120 h at 10 mA cm ⁻²	[23]
Ni ₉ S ₈ /CuS/Cu ₂ O	NF	1.0 M KOH + 0.33 M urea	ΔE ₁₀ = 1.47	20 h at 1.47 V	[24]
NiCo ₂ S ₄ /CC	CC	1.0 M KOH + 0.33 M urea	ΔE ₁₀ = 1.45	15 h at 1.51 V	[25]
NiCo-BDC/Ni-S	NF	1.0 M KOH + 0.33 M urea	ΔE ₁₀ = 1.46	50 h at 10 mA cm ⁻²	[26]
P-CoS _x (OH) _y NN/Ti	ТМ	1.0 M KOH + 0.50 M urea	ΔE ₁₀ = 1.30	40 h at 1.29 V	[27]
Ni(OH) ₂ @NF	NF	1.0 M KOH + 0.30 M urea	ΔE ₅₀ = 1.45	40 h at 20 mA cm ⁻²	[28]
Ni₄N/Cu₃N/CF	CF	1.0 M KOH + 0.50 M urea	$\Delta E_{10} = 1.48$	10 h at 100 mA cm ⁻²	[29]
Ni ₃ N/NF	NF	1.0 M KOH + 0.50 M urea	ΔE ₁₀₀ = 1.42	20 h at 1.37 V	[30]
NiFeCo LDH/NF	NF	1.0 M KOH + 0.33 M urea	ΔE ₁₀ = 1.49	50 h at 10 mA cm ⁻²	[31]
Ni(OH)S/NF	NF	1.0 M KOH + 0.33 M urea	ΔE ₁₀ = 1.36	40 h at 20 mA cm ⁻²	[33]
Ni-Mn-S/Ni-Cu/10	NF	1.0 M KOH + 0.33 M urea	ΔE ₁₀ = 1.302	24 h at 50 mA cm ⁻²	This work

Table S5: Comparison of overall urea electrolysis properties for different electrocatalysts.

References

- 1. Zhang, Y., et al., *Magnetic field-enhanced water splitting enabled by bifunctional molybdenum-doped nickel sulfide on nickel foam.* Carbon Energy, 2023. **5**(10).
- 2. Ma, W., et al., Formulating a heterolytic cleavage process of water on Ni3N nanosheets through single transition metal doping for ultra-efficient alkaline hydrogen evolution. Inorganic Chemistry Frontiers, 2023. **10**(17): p. 5152-5160.
- 3. Li, Z., et al., *Boosting elementary steps kinetics towards energetic alkaline hydrogen evolution via dual sites on phase-separated Ni-Cu-Mn/hydroxide*. Chemical Engineering Journal, 2023. **451**: p. 138540.
- 4. Huang, W., et al., Sulfur-Modified Nickel-Based Hybrid Nanosheet as a Robust Bifunctional Electrode for Hydrogen Generation via Formaldehyde Reforming. ACS Applied Energy Materials, 2023. 6(13): p. 7221-7229.
- 5. Darband, G.B., et al., *Electrodeposition of self-supported transition metal phosphides nanosheets as efficient hydrazine-assisted electrolytic hydrogen production catalyst.* International Journal of Hydrogen Energy, 2023. **48**(11): p. 4253-4263.
- 6. Andaveh, R., et al., *Boosting the electrocatalytic activity of NiSe by introducing MnCo as an efficient heterostructured electrocatalyst for large-current-density alkaline seawater splitting.* Applied Catalysis B: Environmental, 2023. **325**: p. 122355.
- 7. Zhao, M.-J., et al., *Indirect electrodeposition of a NiMo@Ni(OH)2MoOx composite catalyst for superior hydrogen production in acidic and alkaline electrolytes*. Renewable Energy, 2022. **191**: p. 370-379.
- 8. Maleki, M., et al., *Highly active and durable NiCoSeP nanostructured electrocatalyst for large-current-density hydrogen production*. ACS Applied Energy Materials, 2022. **5**(3): p. 2937-2948.
- 9. Maleki, M., et al., *Binder-free P-doped Ni-Se nanostructure electrode toward highly active and stable hydrogen production in wide pH range and seawater.* Journal of Electroanalytical Chemistry, 2022. **916**: p. 116379.
- 10. Arabi, M., A. Ghaffarinejad, and G.B. Darband, *Electrodeposition of nanoporous nickel* selenide on graphite rod as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Journal of Electroanalytical Chemistry, 2022. **907**: p. 116066.
- Zhao, F., et al., Amorphous/amorphous Ni-P/Ni(OH)2 heterostructure nanotubes for an efficient alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2021. 9(16): p. 10169-10179.
- 12. Zhang, G., et al., *NiMn1.5PO4 thin layer supported on Ni foam as a highly efficient bifunctional electrocatalyst for overall water splitting.* Electrochimica Acta, 2021. **367**: p. 137567.
- 13. Wen, Y., et al., *O doping hierarchical NiCoP/Ni2P hybrid with modulated electron density for efficient alkaline hydrogen evolution reaction.* Applied Catalysis B: Environmental, 2021. **293**: p. 120196.
- 14. Jin, Z., et al., *Transition metal/metal oxide interface (Ni-Mo-O/Ni4Mo) stabilized on N-doped carbon paper for enhanced hydrogen evolution reaction in alkaline conditions*. Industrial & Engineering Chemistry Research, 2021. **60**(14): p. 5145-5150.

- 15. He, D., et al., *Tuning the morphologic and electronic structures of self-assembled NiSe/Ni3Se2 heterostructures with vanadium doping toward efficient electrocatalytic hydrogen production.* Applied Surface Science, 2021. **542**: p. 148598.
- 16. Wang, P., et al., *Coupling NiSe2-Ni2P heterostructure nanowrinkles for highly efficient overall water splitting.* Journal of catalysis, 2019. **377**: p. 600-608.
- 17. You, M., et al., *Novel trifunctional electrocatalyst of nickel foam supported Co2P/NiMoO4 heterostructures for overall water splitting and urea oxidation.* Journal of Colloid and Interface Science, 2023. **648**: p. 278-286.
- 18. Wang, T., et al., *Interfacial engineering of Ni3N/Mo2N heterojunctions for urea-assisted hydrogen evolution reaction*. ACS Catalysis, 2023. **13**(7): p. 4091-4100.
- 19. Maleki, M., et al., *Mn-incorporated nickel selenide: an ultra-active bifunctional electrocatalyst for hydrogen evolution and urea oxidation reactions*. Chemical Communications, 2022. **58**(21): p. 3545-3548.
- 20. Fereja, S.L., et al., *W*-doping induced abundant active sites in a 3D NiS2/MoO2 heterostructure as an efficient electrocatalyst for urea oxidation and hydrogen evolution reaction. Chemical Engineering Journal, 2022. **432**: p. 134274.
- 21. Zhang, Y., et al., *Coaxial Ni–S@N-doped carbon nanofibers derived hierarchical electrodes for efficient H2 production via urea electrolysis.* ACS Applied Materials & Interfaces, 2021. **13**(3): p. 3937-3948.
- 22. Xu, Q., et al., Coupling interface constructions of FeNi3-MoO2 heterostructures for efficient urea oxidation and hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2021. **13**(14): p. 16355-16363.
- 23. Xu, H., et al., A branch-like Mo-doped Ni3S2 nanoforest as a high-efficiency and durable catalyst for overall urea electrolysis. Journal of Materials Chemistry A, 2021. 9(6): p. 3418-3426.
- 24. Wei, D., W. Tang, and Y. Wang, *Hairy sphere-like Ni9S8/CuS/Cu2O composites grown on nickel foam as bifunctional electrocatalysts for hydrogen evolution and urea electrooxidation.* International Journal of Hydrogen Energy, 2021. **46**(40): p. 20950-20960.
- 25. Song, W., et al., *Construction of self-supporting, hierarchically structured caterpillar-like NiCo2S4 arrays as an efficient trifunctional electrocatalyst for water and urea electrolysis.* Nanoscale, 2021. **13**(3): p. 1680-1688.
- 26. Li, M., et al., *NiCo-BDC nanosheets coated with amorphous Ni-S thin film for high-efficiency oxygen evolution reaction and urea oxidation reaction.* FlatChem, 2021. **25**: p. 100222.
- 27. Jiang, Y., et al., *Porous and amorphous cobalt hydroxysulfide core-shell nanoneedles on Ti-mesh as a bifunctional electrocatalyst for energy-efficient hydrogen production via urea electrolysis.* Journal of Materials Chemistry A, 2021. **9**(9): p. 5664-5674.
- 28. Xia, L., et al., *In situ growth of porous ultrathin Ni(OH)2 nanostructures on nickel foam: an efficient and durable catalysts for urea electrolysis.* ACS Applied Energy Materials, 2020. **3**(3): p. 2996-3004.
- 29. Li, J., et al., Boosting hydrogen production by electrooxidation of urea over 3D hierarchical Ni4N/Cu3N nanotube arrays. ACS sustainable chemistry & engineering, 2019. 7(15): p. 13278-13285.
- 30. Hu, S., et al., *Ni3N/NF as bifunctional catalysts for both hydrogen generation and urea decomposition.* ACS applied materials & interfaces, 2019. **11**(14): p. 13168-13175.

- 31. Babar, P., et al., *Bifunctional 2D electrocatalysts of transition metal hydroxide nanosheet arrays for water splitting and urea electrolysis.* ACS sustainable chemistry & engineering, 2019. 7(11): p. 10035-10043.
- 32. Babar, P., et al., *Trifunctional layered electrodeposited nickel iron hydroxide electrocatalyst with enhanced performance towards the oxidation of water, urea and hydrazine*. Journal of colloid and interface science, 2019. **557**: p. 10-17.
- 33. Jia, X., et al., *Amorphous Ni(III)-based sulfides as bifunctional water and urea oxidation anode electrocatalysts for hydrogen generation from urea-containing water*. Applied Catalysis B: Environmental, 2022. **312**: p. 121389.