Supplementary Information

Exfoliated MoS₂ nanosheets immobilized in porous microbeads as recoverable photocatalysts

Daehwan Park^{a,b,c}, Jin Woong Kim^b, Chinedum O. Osuji^{a,*}

^a Department of Chemical and Biomolecular Engineering, University of Pennsylvania,

Philadelphia, Pennsylvania 19104, United States

^b School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

^c Department of Chemistry & Cosmetics, Jeju National University, Jeju 63234, Republic of Korea

*Corresponding Author

E-mail: cosuji@seas.upenn.edu

Supporting Figures

Fig S1. (a) Schematic illustration of layered structure of MoS_2 . (b) Chemical structures of sodium alginate and Ca^{2+} ion-crosslinked alginate.

Fig S2. (a) AFM image and (b) height profile of chemically exfoliated MoS₂ nanosheets.

Fig S3. Size distribution of MPBs.

Fig S4. Photographs of MPBs depending on syringe diameter: (a) 18 G, (b) 21 G, and (c) 25G (Scale bar = 10 mm).

Fig S5. Raman spectra of MPB as a function of immobilized MoS₂ concentration.

Fig S6. Cross-section SEM images of MPB as a function of immobilized MoS_2 concentration: (a) PB (no MoS_2), (b) MPB_{0.1}, (c) MPB_{0.2} and (d) MPB_{0.5}. (Scale bar = 20 µm). The yellow area represents well-immobilized MoS_2 nanosheets, and the red area represents aggregated MoS_2 nanosheets.

Fig S7. Experimental setup for photocatalytic performance test. (a) Schematic illustration of cylindrical photoreactor, real photographs of top view: (b) light off, (c) light on.

Fig S8. UV-Vis spectra of MO solution at different pH conditions.

Fig S9. (a) MO adsorption of MPB in the dark under various pH conditions. (b) MO photolysis under visible light. C_i is the initial concentration of MO and C is the concentration of MO at reaction time t.

Fig S10. UV–vis spectra of MO during photodegradation at pH 3 with (a) MPB_{0.2} crosslinked by less Ca²⁺ ions (2 wt%), and (b) large size of MPB_{0.2} (Diameter: 3.6 mm), respectively. (c) Plots of C/C_i versus time for the photodegradation of MO using different catalysts. C_i is the initial concentration of MO and C is the concentration of MO at reaction time t.

Fig S11. (a) UV-Vis spectra of MoS_2 dispersion before and after thermal annealing. (b) Plots of C/C_i versus time for the photodegradation of MO using thermal annealed MoS_2 -immobilized porous beads catalysts. C_i is the initial concentration of MO and C is the concentration of MO at reaction time t. The inset of (b) is the photograph of MO solution after the photodegradation reaction (left: 0.05 mg/g of MoS_2 , right: 0.2 mg/g of MoS_2).

Catalyst	Synthetic methods	Mass of catalyst (mg)	Conc. of dye	Degradation (%)	Time (min)	Light source	Reuse	Ref.
MoS ₂ /Co ₃ O ₄ nanohybrids	Hydrothermal	10	20 mg/L of MO	95.6	170	350 W Xe lamp	0	43
Layered MoS ₂	Hydrothermal	50	0.5 mM of MB	97.5	120	150 W Excimer lamp	Х	44
MoS ₂ /Fe ₃ O ₄	Hydrothermal	50	10 mg/L of MO	79.5	100	300 W Xe lamp	0	45
Leaf-MoS ₂ nanosheets	Hydrothermal	100	50 mg/L of MO	>99	70	300 W Incandescent lamp	0	46
TiO ₂ /MoS ₂ @zelolite	Ultrasonic, hydrothermal	250	20 mg/L of MO	95	60	Xe long-arc lamp	Х	47
MoS ₂ nanoflowers	Hydrothermal	20	0.1 mM of MB	>99	20	Natural day sun light	Х	48
MoS ₂ nanosheets	Hydrothermal	30	20 mg/L of MB	90	330	25 W LED	0	49
2H-MoS ₂ nanosheets	Exfoliation	0.08	5 mg/L of MB	85	720	22 W LED	Х	50
1T@2H MoS ₂	Exfoliation	10	20 mg/L of MB	72.7	60	Xe light	Х	51
MPB	Exfoliation	1	20 mg/L of MO	>99	240	120 W LED	0	This study

Table S1. Comparison with MoS_2 -based photocatalyst for photodegradation of dye.