Electronic Supporting Information

Material-independent film formation and autonomous degradation of Cu²⁺-tetrahydroxy-1,4-benzoquinone metal-organic complex

Hyeong Bin Rheem, Duc Tai Nguyen, and Insung S. Choi*

Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea

Table of Contents

- Fig. S1 XRD spectra of Cu²⁺-THBQ MOC and Cu²⁺-THBQ MOF.
- Fig. S2 UV-vis spectra of Cu²⁺, RA, and Cu²⁺+RA solutions.
- Fig. S3 UV-vis spectra and optical images of Cu²⁺-THBQ MOC solutions under open and Ar-purged conditions.
- Fig. S4 Optical images of a Cu²⁺-THBQ MOF suspension after 48 h of incubation in air and UV-vis spectrum of its supernatant.
- Fig. S5 Film thicknesses of Cu²⁺-THBQ MOC films on gold substrates under various conditions.
- Fig. S6 FE-SEM image of Cu²⁺-HHB MOC.
- Fig. S7 FE-SEM and AFM images, and FT-IR, Raman, and XPS spectra of [Cu²⁺-THBQ]₁₀ films.
- Fig. S8 FE-SEM images of PS particles after repetitive shell formation and degradation.
- Fig. S9 FE-SEM, CLSM, and AFM images of a hollow Cu²⁺-THBQ MOC capsule.

Fig. S1 X-ray diffraction patterns of Cu²⁺-THBQ MOC and as-synthesized Cu²⁺-THBQ MOF. Insets are the optical appearances of each metal-oraganic species.

Fig. S2 UV-vis spectra of Cu^{2+} , RA, and Cu^{2+} +RA solutions with the final concentrations of 1 mM. THBQ undergoes aqueous O₂-driven oxidation, which leads to the degradation of Cu^{2+} -THBQ MOC in air.

Fig. S3 a) (left) UV-vis spectra of Cu^{2+} (cyan), THBQ (red), and Cu^{2+} -THBQ MOC (black) soltions, and a Cu^{2+} -THBQ MOC solution purged with Ar for 48 h (gray, dotted). (right) UV-vis spectrum of a Cu^{2+} -THBQ MOC solution after purging with Ar for 48 h and subsequent exposure to air for 48 h. b) Optical images of Cu^{2+} -THBQ MOC solutions under open (left) and Ar-purged (right) conditions after 48 h. c) Optical images of Cu^{2+} -THBQ MOC solutions exposed to air after the predetermined time.

Fig. S4 Optical images of a Cu²⁺-THBQ MOF suspension after 48 h of incubation in air and UV-vis spectrum of its supernatant.

Fig. S5 a) Film thickness of Cu^{2+} -THBQ MOC films on gold substrates with respect to the number of film layers. Incubation time varies from 1 to 10 min. Insets are the optical images of a bare gold substrate and a gold substrate coated with 10 layers of Cu^{2+} -THBQ MOC films. Scale bar: 1 cm. b) Film thickness of Cu^{2+} -THBQ MOC films on gold substrates with respect to incubation time.

Fig. S6 FE-SEM image of Cu²⁺-HHB MOC on a gold substrate.

Fig. S7 a) FE-SEM and b) AFM images, and c) FT-IR, d) Raman, and e) XPS spectra of [Cu²⁺-THBQ]₁₀ films on gold substrates.

Fig. S8 Changes in zeta potential and FE-SEM images of PS particles after repetitive shell formation and degradation.

Fig. S9 a) FE-SEM and b) CLSM images of a hollow Cu^{2+} -THBQ MOC capsule. c) AFM images and line-scan thickness profiles of hollow Cu^{2+} -THBQ MOC capsules with 1, 2, and 3 depositions (from top to bottom).