SUPPORTING INFORMATION

Size, Shape, Facet and Support Dependent Selectivity of Cu nanoparticles in CO₂ reduction through multiparameter optimization

Anjana Tripathi^a, Ranjit Thapa^{a,b*}

^aDepartment of Physics, SRM University AP, Amaravati 522 240 Andhra Pradesh, India

^{a,b}Centre for Computational and Integrative Sciences, SRM University – AP, Amaravati 522

240, Andhra Pradesh, India

*Corresponding Author: <u>ranjit.phy@gmail.com</u>

S.No	Surface	G _{*соон}	G _{*C0}	G _{*CHO}	G(C1) (G∗ _{СНО} - G∗ _{СО})	G(C2) (G _{*2C0})- (G _{*COCOH})	Favorable pathway
1	Cu111	0.38	-0.04	0.63	0.67	0.73	C1
2	Cu100	0.35	-0.05	0.60	0.65	0.49	C2
3	Cu13	0.09	-0.39	0.29	0.68	0.74	C1
4	Cu38(100)	0.22	0.45	0.51	0.06	0.77	C1
5	Cu38(111)	0.50	0.01	0.63	0.62	0.51	C2
6	Cu55(100)	0.22	-0.09	0.44	0.53	0.42	C2
7	Cu55(111)	0.15	-0.02	0.39	0.41	0.68	C1
8	Cu79(100)	-0.32	-0.54	0.17	0.71	0.55	C2
9	Cu79(111)	0.01	-0.38	0.31	0.69	0.59	C2
10	Cu140(100)	-0.40	-0.75	-0.10	0.65	0.66	C1
11	Cu140(111)	-0.11	-0.37	0.13	0.5	0.69	C1
12	Cu147(100)	-0.16	0.15	0.11	-0.04	0.51	C1
13	Cu147(111)	-0.37	0.13	0.66	0.53	0.62	C1
14	Cu13(Ico)	-0.83	-0.68	-0.56	0.12	1.2	C1
15	Cu55(Ico)	0.38	-0.04	0.58	0.62	0.86	C1
16	Cu147(Ico)	0.31	0.05	0.56	0.51	0.83	C1
17	Cu ₃₈ /3BGr	0.43	0.25	0.78	0.53	0.64	C1
18	Cu ₇₉ /BGr	0.33	-0.01	0.55	0.56	0.97	C1
19	Cu ₃₈ /DVG	0.48	0.35	0.50	0.15	0.22	C1
20	Cu ₇₉ /DVG	0.33	-0.03	0.23	0.26	1.08	C1
21	Cu ₅₅ /DVG	0.33	-0.07	0.64	0.71	0.90	C1
22	Cu ₇₉ /BDVG	0.47	0.01	0.32	0.31	1.10	C1
23	Cu ₁₄₇ /BDVG	0.33	0.11	0.66	0.55	0.71	C1
24	Cu ₅₅ /NDVG	0.28	-0.07	0.53	0.60	0.62	C1
25	Cu ₅₅ /2NDVG	-3.43	-0.08	-3.05	-2.97	-2.72	C2
26	Cu ₁₄₇ /2NDVG	0.26	0.11	0.63	0.52	0.66	C1
27	Cu38/2SO ₂	0.46	0.40	0.78	0.38	0.18	C2
28	Cu55/2SO ₂	-3.76	-0.14	0.46	0.60	0.71	C1
29	Cu79/2SO ₂	0.44	0.11	0.65	0.54	0.49	C2
30	Cu140/2SO ₂	0.53	0.25	0.75	0.50	0.58	C1

Table S1. Gibbs free energy (ΔG_{*COOH} , ΔG_{*CO} , ΔG_{*CHO}) of first four PCET steps in reaction pathway of CO₂RR along with the barrier for C1 and C2 pathway on the systems considered in this work. All units are in eV.

Metal	*СООН	*CO	*2CO	*СОСОН	*CHO
Cu(111)					
Cu ₁₃					
Cu ₃₈					
Cu ₅₅					
Cu ₇₉					
Cu ₁₄₀					
Cu ₁₄₇					

Fig. S1 Optimized geometries of key intermediates adsorbed on the Cu (111) plane and Cun (n = 13, 38, 55, 79, 140 and 147) clusters and the extended surfaces.

Fig. S2 Optimized geometries of key intermediates adsorbed on the Cu (100) plane and Cun (n = 13, 38, 55, 79, 140 and 147) clusters and the extended surfaces.

Metal	*H@(100)	*H@(111)	*H@(100) Top site	*H@(100) Top site
Cu-plane				
Cu ₁₃				
Cu ₃₈				
Cu ₅₅				
Cu ₇₉				
Cu ₁₄₀				
Cu ₁₄₇				

Fig. S3 Optimized geometries of hydrogen atom adsorption on the bridge site and atop site of 100 and 111 plane of Copper nanoparticles.

Fig. S4 Free energy diagram of Hydrogen evolution reaction on bridge site of nanoparticle having different size and shape (see Figure S3 for sites and model structure). Units are in eV.

Fig. S5 Optimized structures of Copper nanoparticle (in blue color) anchored on host surface (in black color).

Fig. S6 Optimized structures of Copper nanoparticle (in blue color) anchored on host surface (in black color) edge doped 2SO₂ graphene nanoribbon.

Fig. S7 Free energy profiles (ΔG) of reaction pathway of CO₂RR with the first four PCET steps and C-C coupling process (a). On 111 facet of Cu₃₈ and Cu₇₉ supported on heteroatom doped graphene (b). On 111 facet of Cu₅₅ and Cu₁₄₇ supported on heteroatom doped graphene.

Fig. S8 Free energy profiles (ΔG) of reaction pathway of CO₂RR to C₂H₄ with *2CO-*COCOH formation pathway on 111 facet of three selected nanoparticles (Cu₃₈, Cu₇₉, Cu₁₄₀) and extended surface (2SO₂ doped graphene nanoribbon) (Cu₃₈/SO₂, Cu₇₉/SO₂).

Fig. S9 Free energy profiles (ΔG) of reaction pathway of CO₂RR to CH₃OH with *CO-*CHO formation pathway on 111 facet of three selected nanoparticles (Cu₃₈, Cu₇₉, Cu₁₄₀). An illustrative example of Cu₇₉ of intermediate structures is shown in the inset.

Fig. S10 Free energy profiles (Δ G) of reaction pathway of CO₂RR to C₂H₅OH with *2CO-*COCOH formation pathway on 111 facet of Icosahedral nanoparticles (Cu₁₃, Cu₅₅, Cu₁₄₇). An illustrative example of Cu₅₅ of intermediate structures is shown in the inset.

Fig. S11 Scaling relations on the (111) surface of Cu nanoparticles between the binding energies of the intermediates versus the binding energies of the descriptors *CO.

Fig. S12 CO coverage map for Cu nanoparticles obtained using microkinetic model based on scaling relations.

Fig. S13 Activity volcano plot for Cu nanoparticles plotted using the binding energy of *CO and *COOH intermediate as the activity descriptors.