Green synthesis of zinc oxide nanoparticles by using Plant extract for catalysis applications

Sreenivasulu Peta* and Sadhana Singh^a

*, a Faculty of Chemical Sciences, Institute of Natural Sciences, Shri Ramswaroop Memorial University, Barabanki, 225 003, U.P, India. *Email: sreenivas.chm@srmu.ac.in.

Synthesis of ZnO nanoparticles

In a typical green synthesis method, peeled oranges are washed and dried. Placed in a dryer for 12 hours until completely dry, and then ground to a moderate fine powder with a mortar and pestle. 1 g of powder is placed in a RB flask, then add 50 ml of water and stirred for 3 h. The mixture is placed in a water bath at 60°C for 60 minutes. Finally, the mixtures were filtered. 2 g of zinc nitrate was added to the 45 ml of extract. The mixture was placed in a water bath at 60 °C for 60 min with continues stirring. White precipitate can be observed; the white precipitate was separated by centrifugation, and then washed with deionized water followed by ethanol respectively to make it free from impurities. The precipitate was then dried at 100 °C and then heat treated at 400 °C for 1 h.

Catalytic Reaction

The alkylation reaction was carried out in a round bottom reflux flask with a continuous flow of cold water and constant stirring. In a typical reaction study, 3 mmol of benzyl alcohol, 0.5 g of catalyst and 5 mL of acetonitrile are taken in a round bottom flask, and then 1 mmol of acetophenone is added drop wise. The temperature was increased to 100°C and this temperature was maintained for 4 hours. The reaction mass was then cooled to room temperature, after which the product was collected by filtration and analyzed by GC-MS.

General Characterizations

The powder X-ray diffraction (XRD) patterns of the materials were recorded using a Rigaku D/Max 2550 X-ray diffractometer operating with Cu K α radiation ($\lambda = 1.5418$ Å). The transmission electron microscope (TEM) images of the materials were obtained with a Topcon

002B TEM microscope operating at 200 kV. The scanning electron microscope (SEM) images of the materials were acquired using a Zeiss Sigma field emission SEM microscope (Model 8100).

The ex-situ FT-IR spectra of pyridine adsorbed samples were recorded on a ThermoElectron FTIR 560 spectrometer together with a MIRacle attenuated total reflectance (ATR) platform assembly and a Ge plate. The pyridine adsorption was carried out on an AutoChem 2920 II (Micromeritics). Prior to adsorption, the catalysts were heated in helium flow at 300 °C for 1 h to remove moisture.

Fig. S2. a, c and c are the TEM images and particle size of ZnO-C, ZnO-H and ZnO-F materials

Fig. S3. UV-Vis grap of a) orange peel extract and b) ZnO-C

Fig. S4. The chemical mechanism of ZnO nanoparticle formation.

Fig. S5. FT-IR patterns of a) orange peel extract and b) ZnO-C

Fig. S6. Typical TGA pattern of Citrus Sinensis synthesized ZnO-C(Before calcination).

Fig. S7 NMR spectra of produtes

Fig. S8 TEM image of spent material of ZnO-C

Table S1. Comparison of the catalytic performances of ZnO catalysts in acetophenone alkylation with other reported catalysts for the same reaction.

S.No	Catalyst	Base	Temperature	Time(h)	Yield (%)1,	Conversion	Ref
			(°C)		3diphenyl	based on	
					prope-1one		
1	(iPr- PNP)Mn(H)(CO)2	tBuOK	125	18	98	Benzyl alcohol	S1
2	Ni/SiO ₂ -Al ₂ O ₃	K ₃ PO ₄	175	14.5	86	Benzyl alcohol	S2
3	Nano-Fe2O3	t-ButOK	135	24	97		\$3
4	Cu/CuOx 250	K ₃ PO ₄ (0.5)	170	12	93	Acetophenone	S4
5	CeO ₂		150	6	14	Acetophenone	85
6	ZnO-C		100	4	80	Acetophenone	Present work
7	ZnO-C(used catalyst)		100	4	78	Acetophenone	Present work

S1 S. Chakraborty, P. Daw, Y. B. David, and D. Milstein, ACS Catal., 2018, 8, 10300-10305.

- S2 A. Charvieux, J. B. Giorgi, N. Duguet, and E. Métay, Green Chem., 2018,20,4210-4216.
- S3. M. Nallagangula, C. Sujatha, V. T. Bhat and K. Namitharan, Chem. Commun., 2019, 55, 8490-8493.
- S4. D. Yang, H. Wang, and C. -R. Chang, Org. Biomol. Chem., 2024, 22, 970-975.
- S5 Z. Zhang, Y. Wang, M. Wang, J. Lu, C. Zhang, L. Li, J. Jiang, and F. Wang, Catal. Sci. Technol., 2016, 6, 1693-1700.