Supplementary Information

Layer-number-dependent Photoswitchability in 2D MoS₂-Diarylethene Hybrids

Sewon Park¹, Jaehoon Ji¹, Srajan Pillai², Henry Fischer², Jean Rouillon³, Carlos Benitez-Martin⁴, Joakim Andréasson³, Jeong Ho You², and Jong Hyun Choi^{1*}

 ¹ School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
² Department of Mechanical Engineering, University of St. Thomas, St. Paul, Minnesota 55105, United States
³ Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
⁴ Department of Chemistry and Molecular Biology, University of Gothenburg, SE-413 90 Gothenburg, Sweden

* Corresponding author: jchoi@purdue.edu

Contents:

- 1. AFM Imaging of MoS₂-DAE Samples on SiO₂/Si Substrates
- 2. PL Measurements of Additional MoS₂-DAE Hybrid Samples
- 3. Control Experiments with Monolayer MoS₂
- 4. AFM Imaging of MoS₂ Samples on ITO Substrates
- 5. C-AFM Measurements of Additional MoS₂-DAE Hybrid Samples
- 6. DFT Calculations

1. AFM Imaging of MoS2-DAE Samples on SiO2/Si Substrates

Figure S1. AFM images of (a) 2L MoS₂ flake and (b) 2L MoS₂-DAE hybrid are shown, with the corresponding height differences depicted in (c). The thickness of the 2L MoS₂ flake is \sim 1.60 nm, while the DAE measures \sim 2.11 nm. Additionally, AFM images of (d) 3L MoS₂ flake and (e) 3L MoS₂-DAE hybrid are provided. The thickness of the 3L MoS₂ flake is \sim 2.28 nm, and the DAE measures \sim 2.16 nm. These samples were used for PL measurements presented in Figure 2e-f.

2. PL Measurements of Additional MoS2-DAE Hybrid Samples

Figure S2. AFM image of MoS_2 flakes featuring (a) 1L, (b) 2L, and 3L, with the boundaries highlighted by dotted lines. The photo-modulation processes were repeated twice on the 1L to 3L MoS_2 -DAE system. (c) The 1L MoS_2 exhibits significant PL quenching after UV irradiation, with the signal fully recovering under visible light. In contrast, the hybrids with (d) 2L and (e) 3L MoS_2 show no notable PL quenching.

3. Control Experiments with Monolayer MoS₂

Figure S3. Control experiments were conducted with 1L MoS₂ (without a DAE layer) to confirm the effects of visible and UV light irradiation, which also indicates minimal substrate effects on charge transfer interactions. (a) The PL emission of as-prepared monolayer MoS₂ is consistent with those after exposure to visible and UV irradiation, showing no significant differences. (b) The C-AFM results also indicate that the variations between each case are minimal. These results indicate that optical modulation in the 1L MoS₂-DAE system arises from the unique hybrid interaction between DAE and 1L MoS₂.

4. AFM Imaging of MoS₂ Samples on ITO Substrates

Figure S4. AFM images of (a) $1L MoS_2$, (b) $2L MoS_2$, and (c) $3L MoS_2$ flakes fabricated on ITO substrates. These samples were used to measure C-AFM data presented in Figure 4.

5. C-AFM Measurements of Additional MoS₂-DAE Hybrid Samples

Figure S5. Additional C-AFM measurements were conducted on MoS_2 -DAE hybrid samples under both visible and UV light irradiation. These measurements were performed on (a) 1L MoS_2 , as illustrated in the AFM image (d); (b) 2L MoS_2 , as depicted in the AFM image (e); and (c) 3L MoS_2 , as shown in the AFM image (f).

6. DFT Calculations

Figure S6. Representative relaxed hybrid structures. (a) Closed- and (b) Open-form DAE on 2L MoS₂-DAE. The DAE conformation and interaction at the hybrid heterointerface are consistent with those between DAE and 1L and 3L MoS₂.