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1 Note S1. RDKit Descriptor Selection

We applied the following steps to select features from 209 RDKit descriptors that are relevant

to the target property (e.g., optical band gap Eexp
gap) and to remove redundant variables that are

highly correlated with each other: (i) removal of descriptors with missing values, infinite values, and

constant values; (ii) removal of descriptors with a pairwise Pearson correlation coefficient (Ppair)

greater than or equal to 0.90; (iii) removal of descriptors with a Pearson correlation coefficient with

respect to the optical band gap (Pgap) less than or equal to 0.05. We tested different combinations of

Ppair and Pgap values with the XGBoost model for optical band gap prediction, with the performance

metrics presented in Table S2. The list of 54 RDKit descriptors selected for predicting experimental

optical gap is shown in Table S3.

2 Note S2. Model Training Strategy

We applied 10-fold cross validation (CV) method[1] to train the ML models as shown in Figure

S3. First, the whole dataset of 1096 data points was randomly divided into 10 subsets. We used 9

subsets as the training set and 1 as the test set. This procedure was repeated 10 times by rotating

each of the 10 subsets as the test set. The training data in each subset was further divided into

training and validation by an extra 10-fold CV. For each test set in the 10-fold CV, the average value

calculated from the extra 10-fold CV was used as the prediction value. The ML model accuracy
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was determined by the average performance metrics (RMSE, MAE, R2, r) of the 10-fold CV. The

hyper-parameters can be found in Table S14.

3 Note S3. Model Performance Metrics

In this work, we applied four metrics to evaluate the effectiveness of ML models for predicting

experimental optical gap, including coefficient of determination (R2), Pearson correlation coefficient

(r), Root mean square error (RMSE), and mean absolute error (MAE). The definitions of four

metrics were shown as follows.

R2 = 1−
∑n

i=1(yi − xi)
2∑n

i=1(ȳ − xi)2
(1)

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n
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(2)
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n
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in which xi and yi represent the experimental and predicted band gap values, and x̄ and ȳ represent

the mean value of experimental and predicted values, respectively.

4 Note S4. Differences Among the Six Machine Learning

Algorithms

In this section, we summarize the differences among six commonly used machine learning algorithms,

highlighting their unique features and strengths for various tasks.

1. XGBoost: A gradient-boosted decision tree algorithm that uses regularization to prevent

overfitting. It is highly efficient for structured data and includes hyperparameters like learning

rate and tree depth.

2. HGBR (Histogram-Based Gradient Boosting Regressor): Similar to XGBoost but

designed for faster computation by using histogram-based binning, particularly effective for

large datasets.

3. LGBM (Light Gradient Boosting Machine): A boosting framework that splits trees

leaf-wise instead of level-wise, leading to better accuracy for imbalanced datasets.

4. GBR (Gradient Boosting Regressor): A classic implementation of boosting for regression

problems, which uses shallow trees to improve robustness against overfitting.
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5. AdaBoost: Focuses on sequentially correcting errors by assigning higher weights to misclas-

sified samples during training, making it sensitive to noise.

6. RF (Random Forest): A bagging-based ensemble learning method that builds multiple

decision trees and averages their predictions, prioritizing robustness and reducing variance.

5 Note S5. Oligomer structure construction

Given the limited understanding of the correlation between the conjugation length of backbone

chain and the electronic properties of CPs, we calculated the HOMO, LUMO, and gap values of

four polymer structures with different repeating units (see Figure S4 and Table S4). Based on our

tests, we have established following guidelines for constructing oligomer structures to effectively

capture the electronic properties of CPs: First, the oligomer should comprise at least four aromatic

blocks linked by C-C single bonds along the backbone chain. Second, the structure should consist

of at least six aromatic rings. Commonly used aromatic rings include thiophene, furan, pyrrole,

benzene, and their derivatives. These aromatic rings can combine to form larger aromatic units

such as benzodithiophene (BDT), which consists of two thiophenes and one benzene. In addition,

monomers containing over four aromatic blocks with over eight aromatic rings can be employed for

DFT calculations as they already contain sufficient conjugation to mimic the properties of larger

oligomer. In the case of BDT-T polymer, the monomer consists of two building blocks with four

aromatic rings in total. Thus, the dimer structure, which contains four building blocks with eight

aromatic rings along the backbone chain, meets the outlined criteria (see Table S4).

6 Note S6. Exchange-correlation functional test

The DFT-calculated HOMO-LUMO gaps are notably influenced by the choice of exchange-correlation

(xc) functionals. A variety of xc functionals have been extensively applied to the study of organic

molecules and CP materials systems for both ground and excited state electronic property calcu-

lations.[2–4] In this study, we investigated the correlations among four xc functionals for HOMO-

LUMO gap calculations with oligomer structures: PBE at the GGA level, and the hybrid-GGA

functionals B3LYP, ωB97XD, and CAM-B3LYP. Table S5 illustrates that all four functionals achieve

Pearson correlation coefficients (r) above 0.96 among each other. Furthermore, linear fits between

these functionals, detailed in Figure S5, yielded R2 values ranging from 0.922 to 0.999. These results

suggest that while different xc functionals produce varying absolute HOMO-LUMO gap values, their

relative correlations remain strong. Thus, the four xc functionals demonstrate similar performance

metrics in linear regression between DFT and experimental gaps, with ωB97XD showing slightly

superior correlation, evidenced by higher R2 and lower MAE values (see Table S6).

Additionally, we utilized the TDDFT method at the B3LYP level to calculate the lowest excited

states (S1) for oligomers. As shown in Figure S6, TDDFT-calculated S1 state energies are highly

correlated with DFT calculated HOMO-LUMO gaps with a R2 value of 0.973. The performance

metrics of linear regression for predicting optical gaps with S1 values were presented in Table S7.
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Our results suggest that employing lower-level xc functionals for ground state electronic structure

calculations is preferable for generating quantum chemical descriptors in machine learning model

training, optimizing the balance between prediction accuracy and computational efficiency for high-

throughput material screening.

7 Note S7. SHAP Analysis of Feature Importance

To compare the importance of individual features in predicting the optical band gap, SHAP (SHap-

ley Additive exPlanations) analysis was performed for models trained with oligomer-derived DFT-

calculated HOMO-LUMO gaps. The results (Figure S7) provide a clear comparison of the top five

most important features for each model.

Across all machine learning models, DFT-calculated HOMO-LUMO gap emerges as the most

influential feature, with its mean SHAP value substantially exceeding those of other descriptors.

Meanwhile, RDKit descriptors such as fr C=O and VSA EState2 are consistently among the top five

impactful features, indicating that the structural information they provide effectively complements

the electronic properties captured by the DFT-calculated gap. These findings highlight the strong

predictive capability of the DFT-calculated HOMO-LUMO gap of oligomers in representing extended

conjugation and electronic structure, while the inclusion of structural descriptors further refines

model performance by capturing additional molecular variations.
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Figure S1: Chemical structures of 18 non-conjugated polymers containing sp3-hybridized N atom
along backbone chain.
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Figure S2: The distributions of the experimentally measured HOMO, LUMO, and optical band gap
(Eexp

gap) values of the conjugated polymers in the dataset with 1096 data points. Unit: eV.

Figure S3: The model training process with 10-fold cross validation (CV) method. For each train
set, an extra 10-fold CV was applied.
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Figure S4: Chemical structures of four conjugated polymers used for conjugation length test.

Figure S5: Linear fits of HOMO-LUMO gaps calculated with B3LYP, ωB97XD, CAM-B3LYP, and
PBE exchange-correlation functionals.
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Figure S6: Correlation between HOMO-LUMO gap and lowest excited state (S1) calculated at the
B3LYP level.

Figure S7: Mean absolute SHAP values of the top 5 features for predicting optical band gaps with
(a) HGBM (b) LGBM (c) GBR (d) XGBoost (e) RF models. HOMO-LUMO gap was calculated
from modified oligomer structures.
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Figure S8: Pearson correlation coefficient map between the top 5 features for (a) HGBM (b) LGBM
(c) GBR (d) XGBoost (e) RF models. HOMO-LUMO gap was calculated from modified oligomer
structures.
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Figure S9: Chemical structures of 10 conjugated polymers.

Table S1: Statistical analysis of the experimentally measured HOMO, LUMO, and optical band gap
(Eexp

gap) values of the conjugated polymers in the dataset with 1096 data points. Unit: eV.

Property 10% 90% mean std max

HOMO -5.6 -5.055 -5.334 0.225 -4.24

LUMO -3.9 -3.31 -3.618 0.256 -2.59

Eexp
gap 1.465 1.98 1.716 0.206 2.39
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Table S2: Feature selection from 209 RDKit descriptors for predicting optical band gaps of conju-
gated polymers and the performance metrics of XGBoost model trained with different combinations
of pairwise Pearson correlation coefficient (Ppair) among descriptors and with respect to optical
band gap (Pgap). The Bold indicates the optimal combination of Ppair and Pgap values. RMSE and
MAE are measured in eV.

Round Ppair Pgap # variables RMSE R2 r MAE

1 0.95 0.01 89 0.132 0.574 0.761 0.091

2 0.95 0.05 60 0.134 0.561 0.75 0.092

3 0.95 0.1 32 0.14 0.524 0.727 0.096

4 0.95 0.2 12 0.156 0.407 0.648 0.108

5 0.9 0.01 82 0.133 0.572 0.758 0.091

6 0.9 0.05 54 0.134 0.565 0.753 0.092

7 0.9 0.1 29 0.138 0.531 0.732 0.095

8 0.9 0.2 10 0.156 0.405 0.65 0.108

Table S3: The list of 54 RDKit descriptors for predicting experimental optical gap.

MaxAbsEStateIndex PEOE VSA1 SMR VSA3 EState VSA4

MinAbsEStateIndex PEOE VSA11 SMR VSA4 EState VSA5

MinEStateIndex PEOE VSA12 SMR VSA6 EState VSA10

NumAliphaticCarbocycles PEOE VSA13 SMR VSA9 EState VSA11

NumAliphaticHeterocycles PEOE VSA14 SMR VSA10 fr C O

NumAliphaticRings PEOE VSA2 SlogP VSA1 fr aniline

NumAromaticCarbocycles PEOE VSA6 SlogP VSA2 fr bicyclic

NumAromaticHeterocycles PEOE VSA9 SlogP VSA4 fr halogen

NumHAcceptors qed SlogP VSA10 fr imide

VSA EState2 MolWt SlogP VSA11 fr oxazole

VSA EState3 BalabanJ SlogP VSA12 fr pyridine

VSA EState8 TPSA EState VSA1 fr ketone Topliss

FractionCSP3 SMR VSA1 EState VSA2

FpDensityMorgan1 SMR VSA2 EState VSA3
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Table S4: DFT calculated HOMO, LUMO, and gap (EDFT
gap ) of four conjugated polymers (CPs)

with different repeating units. The chemical structures of these four CPs are shown in Figure S4.
HOMO, LUMO, and EDFT

gap are measured in eV.

Polymer #repeating

unit

#aromatic

ring

#aromatic

block

HOMO LUMO EDFT
gap

Thiophene

1 1 1 -5.692 0.044 5.735

2 2 2 -5.141 -1.066 4.075

4 4 4 -4.789 -1.813 2.976

6 6 6 -4.694 -2.112 2.582

8 8 8 -4.639 -2.247 2.392

10 10 10 -4.669 -2.289 2.38

BDT-T

1 4 2 -5.109 -1.465 3.644

2 8 4 -4.946 -2.1 2.846

3 12 6 -4.943 -2.252 2.691

ffQA-T

1 2 2 -5.598 -2.131 3.468

2 4 4 -5.244 -2.486 2.758

3 6 6 -5.126 -2.643 2.483

4 8 8 -5.072 -2.727 2.346

5 10 10 -5.043 -2.778 2.265

BDT-TT-QA-TT
1 8 4 -4.829 -2.355 2.474

2 16 8 -4.717 -2.499 2.217

Table S5: Pearson correlation coefficients of HOMO-LUMO gap values calculated with B3LYP,
ωB97XD, CAM-B3LYP, and PBEPBE exchange-correlation functionals. The modified oligomer
structures were used for DFT single-point calculations.

B3LYP 1

ωB97XD 0.99 1

CAM-B3LYP 0.99 1 1

PBEPBE 0.99 0.96 0.96 1

B3LYP ωB97XD CAM-B3LYP PBEPBE

Table S6: Performance metrics of linear regression between HOMO-LUMO gaps calculated with
B3LYP, ωB97XD, CAM-B3LYP, and PBE exchange-correlation functionals, and experimental opti-
cal gaps.

xc functional RMSE R2 r MAE

B3LYP 0.144 0.512 0.716 0.111

ωB97XD 0.141 0.532 0.729 0.108

CAM- B3LYP 0.141 0.528 0.727 0.109

PBE 0.146 0.498 0.706 0.111
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Table S7: Performance metrics of linear regression for predicting experimental optical gaps with
HOMO-LUMO gaps (EDFT

gap ) and lowest excited state (S1) calculated at the B3LYP level.

Feature (eV) RMSE R2 r MAE

EDFT
gap 0.144 0.512 0.716 0.111

S1 0.153 0.448 0.669 0.12

Table S8: The number of data points and the corresponding percentage of each group of conjugated
polymers categorized based on donor and acceptor units, respectively.

#Data point ratio

All dataset 1096 100%

Donor units

D1 512 46.70%

D2 107 9.80%

D3 75 6.80%

D4 73 6.70%

others 329 30%

Acceptor units

A1 360 32.80%

A2 105 9.60%

A3 118 10.80%

A4 98 8.90%

others 415 37.90%
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Table S9: The performance metrics of 6 Machine Learning models in predicting the experimental
optical gaps of conjugated polymer, trained with RDKit descriptors combined with DFT-calculated
HOMO-LUMO gaps. The best ML model is highlighted in bold. RMSE and MAE are measured in
eV.

Input features Model RMSE R2 r MAE

RDKit

HGBR 0.137 0.541 0.738 0.095

LGBM 0.137 0.54 0.737 0.095

GBR 0.145 0.49 0.709 0.105

XGBoost 0.134 0.565 0.753 0.092

AdaBoost 0.172 0.282 0.547 0.136

RF 0.141 0.515 0.724 0.097

Emonomer
gap +RDKit

HBGR 0.123 0.632 0.798 0.086

LGBM 0.124 0.632 0.798 0.086

GBR 0.132 0.579 0.767 0.097

XGBoost 0.124 0.632 0.798 0.086

AdaBoost 0.157 0.406 0.645 0.121

RF 0.13 0.595 0.778 0.09

Eoligomer
gap +RDKit

HGBR 0.101 0.747 0.867 0.069

LGBM 0.101 0.747 0.868 0.069

GBR 0.106 0.728 0.857 0.077

XGBoost 0.104 0.738 0.861 0.07

AdaBoost 0.129 0.599 0.781 0.1

RF 0.107 0.723 0.853 0.074
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Table S10: The performance metrics of 6 Machine Learning models in predicting the experimental
optical gaps of conjugated polymer, trained with MACCS fingerprint combined with DFT-calculated
HOMO-LUMO gaps. The best ML model is highlighted in bold. RMSE and MAE are measured in
eV.

Input features Model RMSE R2 r MAE

MACCS

HGBR 0.146 0.484 0.7 0.103

LGBM 0.146 0.484 0.7 0.103

GBR 0.145 0.489 0.705 0.105

XGBoost 0.143 0.5 0.716 0.095

AdaBoost 0.168 0.314 0.569 0.128

RF 0.139 0.527 0.728 0.095

Emonomer
gap +MACCS

HBGR 0.135 0.565 0.756 0.097

LGBM 0.134 0.567 0.757 0.097

GBR 0.137 0.548 0.747 0.101

XGBoost 0.132 0.578 0.766 0.094

AdaBoost 0.16 0.384 0.63 0.124

RF 0.13 0.592 0.774 0.093

Eoligomer
gap +MACCS

HGBR 0.111 0.699 0.839 0.078

LGBM 0.111 0.697 0.839 0.079

GBR 0.112 0.695 0.837 0.082

XGBoost 0.113 0.69 0.836 0.078

AdaBoost 0.136 0.551 0.748 0.108

RF 0.111 0.7 0.839 0.077
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Table S11: The performance metrics of 6 Machine Learning models in predicting the experimental
optical gaps of conjugated polymer, trained with ECFP6 fingerprint combined with DFT-calculated
HOMO-LUMO gaps. The best ML model is highlighted in bold. RMSE and MAE are measured in
eV.

Input features Model RMSE R2 r MAE

ECFP6

HGBR 0.116 0.673 0.823 0.08

LGBM 0.116 0.673 0.823 0.08

GBR 0.128 0.602 0.795 0.094

XGBoost 0.111 0.701 0.84 0.075

AdaBoost 0.16 0.381 0.641 0.123

RF 0.12 0.649 0.815 0.082

Emonomer
gap +ECFP6

HBGR 0.11 0.706 0.844 0.075

LGBM 0.11 0.706 0.844 0.075

GBR 0.122 0.643 0.814 0.088

XGBoost 0.108 0.718 0.85 0.074

AdaBoost 0.149 0.463 0.693 0.114

RF 0.119 0.661 0.821 0.082

Eoligomer
gap +ECFP6

HGBR 0.099 0.762 0.875 0.067

LGBM 0.099 0.764 0.876 0.067

GBR 0.104 0.74 0.864 0.076

XGBoost 0.097 0.773 0.881 0.065

AdaBoost 0.125 0.623 0.795 0.096

RF 0.102 0.748 0.867 0.07
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Table S12: Experimental optical gaps (Eexp
gap), predicted values (Epred

gap ) and the corresponding errors
(RMASE and MAE) with XGBoost-2 and XGBoot-2-plus for 10 conjugated polymers. All the values
are measured in eV.

XGBoost-2 XGBoost-2-plus Experiments

index Epred
gap error Epred

gap error Eexp
gap Reference

1 1.935 -0.205 1.909 -0.179 1.73 Ref[5]

2 2.078 -0.188 1.966 -0.076 1.89 Ref[6]

3 1.669 -0.219 1.623 -0.173 1.45 Ref[7]

4 1.576 -0.266 1.496 -0.186 1.31 Ref[8]

5 1.708 0.192 1.751 0.149 1.9 Ref[9]

6 1.486 0.474 1.507 0.453 1.96 Ref[10]

7 1.649 0.371 1.644 0.376 2.02 Ref[11]

8 1.82 0.19 1.844 0.166 2.01 Ref[12]

9 2.064 0.696 2.642 0.118 2.76 Ref[13]

10 1.668 -0.287 1.464 -0.083 1.381 Ref[14]

RMSE 0.346 0.228

MAE 0.309 0.196

Table S13: The performance metrics for XGBoost model in predicting the experimental HOMO and
LUMO levels of conjugated polymers with various molecular descriptors as input. RMSE and MAE
are measured in eV.

Target Model Features RMSE R2 r MAE

HOMO
XGBoost-1-H ECFP6 0.163 0.468 0.69 0.113

XGBoost-2-H HOMOoligomer+ECFP6 0.158 0.503 0.716 0.109

LUMO
XGBoost-1-L ECFP6 0.168 0.555 0.748 0.118

XGBoost-2-L LUMOoligomer+ECFP6 0.161 0.595 0.775 0.112
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Table S14: The default hyperparameters for six machine learning models.

Model Hyperparameter Default Value Notes

HGBR (Histogram-Based Gradient Boosting Regressor)

max iter 100 Number of boosting iterations.

max depth None No limit on tree depth.

learning rate 0.1 Weighting of each boosting step.

LGBMRegressor

max iter default Automatically determined.

max depth -1 Unlimited depth (-1 indicates no limit).

learning rate 0.1 Weighting of each boosting step.

GBR (Gradient Boosting Regressor)

max iter default Automatically determined.

max depth 3 Maximum depth of each tree.

learning rate 0.1 Weighting of each boosting step.

XGBRegressor (XGB)

max iter default Automatically determined.

max depth 6 Maximum depth of each tree.

learning rate 0.3 Weighting of each boosting step.

RandomForestRegressor (RF)
max iter default Automatically determined.

max depth None No limit on tree depth.

AdaBoostRegressor
max iter default Automatically determined.

learning rate 1.0 Weighting of each boosting step.

S18



References

1. Kyaw Zin PP, Borrel A, and Fourches D. Benchmarking 2D/3D/MD-QSAR models for Ima-

tinib derivatives: how far can we predict? Journal of Chemical Information and Modeling

2020;60:3342–60.

2. Sohlberg K and Foster ME. What’s the gap? A possible strategy for advancing theory, and an

appeal for experimental structure data to drive that advance. RSC advances 2020;10:36887–96.

3. Sun H and Autschbach J. Electronic energy gaps for π-conjugated oligomers and polymers cal-

culated with density functional theory. Journal of Chemical Theory and Computation 2014;10:1035–

47.

4. Salzner U and Aydin A. Improved prediction of properties of π-conjugated oligomers with range-

separated hybrid density functionals. Journal of chemical theory and computation 2011;7:2568–

83.

5. Du Z, Cai M, Du L, et al. Effect of alkylthiolated hetero-aromatic rings on the photovoltaic per-

formance of benzodithiophene-based polymer/fullerene solar cells. Synthetic Metals 2021;276:116756.

6. Zhai X, Wang X, Zhu K, et al. Random terpolymers for high-performance semitransparent

polymer solar cells. Dyes and Pigments 2021;195:109680.

7. Caliskan M, Erer MC, Aslan ST, Udum YA, Toppare L, and Cirpan A. Narrow band gap

benzodithiophene and quinoxaline bearing conjugated polymers for organic photovoltaic appli-

cations. Dyes and Pigments 2020;180:108479.

8. Ren S, Zhang W, Wang Z, Yassar A, Liao Z, and Yi Z. Synergistic Use of All-Acceptor Strate-

gies for the Preparation of an Organic Semiconductor and the Realization of High Electron

Transport Properties in Organic Field-Effect Transistors. Polymers 2023;15:3392.

9. Kim J, Lee WH, Park JB, Hwang DH, and Kang IN. Synthesis and characterization of the

fluorinated thieno [3, 4-c] pyrrole-4, 6-dione-based donor-acceptor polymers for organic solar

cells. Dyes and Pigments 2019;160:403–9.

10. Zhao X, Wen Y, Ren L, Ma L, Liu Y, and Zhan X. An acceptor-acceptor conjugated copolymer

based on perylene diimide for high mobility n-channel transistor in air. Journal of Polymer

Science Part A: Polymer Chemistry 2012;50:4266–71.

11. Gunturkun D, Isci R, Faraji S, Sütay B, Majewski LA, and Ozturk T. Synthesis and char-

acterization of naphthalenediimide-thienothiophene-conjugated polymers for OFET and OPT

applications. Journal of Materials Chemistry C 2023;11:13129–41.

12. Liao Z, Hu D, Tang H, et al. 18.42% efficiency polymer solar cells enabled by terpolymer donors

with optimal miscibility and energy levels. Journal of Materials Chemistry A 2022;10:7878–87.

13. Intemann JJ, Hellerich ES, Tlach BC, et al. Altering the conjugation pathway for improved

performance of benzobisoxazole-based polymer guest emitters in polymer light-emitting diodes.

Macromolecules 2012;45:6888–97.

S19



14. Sun H, Liu B, Ma Y, et al. Regioregular narrow-bandgap n-type polymers with high electron

mobility enabling highly efficient all-polymer solar cells. Advanced Materials 2021;33:2102635.

S20


