Supporting Information

Water Gas Shift Reaction Mechanism and Activity on Single

Atom Alloy Al₁/Cu (111) Surface

Yun Bai, Dongxu Tian*

School of Chemistry, Dalian University of Technology, No.2 Linggong Road, Dalian City, Liaoning Province, P. R. China, 116024

Table S1. H₂O adsorption and dissociation data on M_1/Cu (111) (M = Ga, Al, Be and Cu) surfaces

	Cu (111)	Ga ₁ /Cu (111)	Al ₁ /Cu (111)	Be ₁ /Cu (111)	
$E_{\mathrm{ads-H_2O}} (\mathrm{eV})$	-0.43	-0.29	-0.58	-0.63	
$d_{ m HO-H-IS}(m \AA)$	0.98	0.98	1.01	0.99	
$\Theta_{ ext{(H-O-H)}}(\degree)$	104.86	104.64	116.57	107.28	
$d_{ m HO-H-TS}$ (Å)	1.48	1.53	1.40	1.38	
$\Delta E_{\rm a} ({\rm eV})$	1.13	1.07	0.67	0.51	
Freq (cm ⁻¹)	1263.29i	1044.65i	1177.69i	1206.93i	

Table S2. The reaction mechanism and the RDS and reaction energy barrier forWGSR on representative catalysts.

System	Mechanism	RDS	Activation energy	Ref.
Ir ₁ /FeOx	redox	$\mathrm{H}^* + \mathrm{H}^* \twoheadrightarrow \mathrm{H}_2^*$	3.45	1
Ir ₁ /FeOx	redox	$\mathrm{CO}^* + \mathrm{O}^* \rightarrow \mathrm{CO}_2^*$	1.52	1
Cu/a-MoC	carboxyl	$\mathrm{H_2O^*} \twoheadrightarrow \mathrm{H^*} + \mathrm{OH^*}$	0.96	2
CuB	carboxyl	$\mathrm{H_2O^*} \twoheadrightarrow \mathrm{H^*} + \mathrm{OH^*}$	1.16	3
Pt ₁ /FeOx	carboxyl	H migration from O to Pt	1.29	4
Cu (211)	carboxyl	$\mathrm{H_2O^*} \twoheadrightarrow \mathrm{H^*} + \mathrm{OH^*}$	0.94	5
Pt (111)	carboxyl	$\mathrm{H_2O^*} \twoheadrightarrow \mathrm{H^*} + \mathrm{OH^*}$	0.88	6
Au (100)	carboxyl	$\mathrm{H_2O^*} \twoheadrightarrow \mathrm{H^*} + \mathrm{OH^*}$	1.53	7
Cu ₂₉	carboxyl	$\mathrm{H_2O^*} \twoheadrightarrow \mathrm{H^*} + \mathrm{OH^*}$	0.93	7
Au ₂₉	carboxyl	$\mathrm{H_2O^*} \twoheadrightarrow \mathrm{H^*} + \mathrm{OH^*}$	1.29	7
Pt/TiO ₂	redox	$CO_2^* \rightarrow CO_2(g)$	0.91	8
$Pt_1 @Ti_3 C_2 S_2 \\$	redox	$OH^* \rightarrow H^* + O^*$	1.12	9
aNi@TiO _{2-x}	redox	$\mathrm{H_2O^*} \twoheadrightarrow \mathrm{H^*} + \mathrm{OH^*}$	0.35	10
K/Cu (111)	carboxyl	$H_2O^* \rightarrow H^* + OH^*$	1.08	11
K/Cu (100)	carboxyl	$\mathrm{H_2O^*} \twoheadrightarrow \mathrm{H^*} + \mathrm{OH^*}$	1.06	11

References

1. J. X. Liang, J. Lin, J. Y. Liu, X. D. Wang, T. Zhang and J. Li, Angew Chem Int

Edit, 2020, 59, 12868-12875.

- X.-Y. Zou, L. Mi, Z.-J. Zuo, Z.-H. Gao and W. Huang, *Journal of Molecular Modeling*, 2020, 26, 237.
- 3. G. C. Zhao, J. S. Wang, Y. Q. Qiu and C. G. Liu, *Mol Catal*, 2020, **493**, 116046.
- 4. S.-F. Wang, Y. Li, H. Wang, J.-X. Liang, C. Zhu and B. Qiao, *Nano Research*, 2024, **17**, 8627-8637.
- 5. Z. Y. Li, N. Li, N. Wang, B. Zhou, P. Yin, B. Y. Song, J. Yu and Y. S. Yang, *Acs Omega*, 2022, **7**, 3514-3521.
- 6. L. C. Grabow, A. A. Gokhale, S. T. Evans, J. A. Dumesic and M. Mavrikakis, *J Phys Chem C*, 2008, **112**, 4608-4617.
- 7. P. Liu and J. A. Rodriguez, *J Chem Phys*, 2007, **126**, 164705.
- 8. S. C. Ammal and A. Heyden, *Acs Catal*, 2017, 7, 301-309.
- Y. Meng, H. Wang, J.-X. Liang, C. Zhu and J. Li, *Precision Chemistry*, 2024, 2, 70-80.
- M. Xu, S. Yao, D. Rao, Y. Niu, N. Liu, M. Peng, P. Zhai, Y. Man, L. Zheng, B. Wang, B. Zhang, D. Ma and M. Wei, *J Am Chem Soc*, 2018, 140, 11241-11251.
- 11. Y. X. Wang and G. C. Wang, Acs Catal, 2019, 9, 2261-2274.

Figure S1. The PDOS plots for H_2O adsorption states(IS), dissociation transition states (TS) and final states(FS) on the M_1/Cu (111) (M = Be and Ga).

Figure S2. Initial state (IS), transition state (TS), final states (FS) of the reaction of each radical of WGSR on Cu (111).

Figure S3. Initial state (IS), transition state (TS), final states (FS) of the reaction of each radical of WGSR on Al_1/Cu (111).

Figure S4. OH migration from the Al top site to the hollow site and CO migration from the Cu hollow site to the Al top site.